
Ubuntu Packaging Guide
Release 0.3.7

Ubuntu Developers

July 18, 2015

Contents

1 Articles 2
1.1 Introduction to Ubuntu Development . 2
1.2 Getting Set Up . 4
1.3 Ubuntu Distributed Development — Introduction . 8
1.4 Fixing a bug in Ubuntu . 11
1.5 Tutorial: Fixing a bug in Ubuntu . 14
1.6 Packaging New Software . 18
1.7 Security and Stable Release Updates . 21
1.8 Patches to Packages . 23
1.9 Fixing FTBFS packages . 26
1.10 Shared Libraries . 27
1.11 Backporting software updates . 29

2 Knowledge Base 31
2.1 Communication in Ubuntu Development . 31
2.2 Basic Overview of the debian/ Directory . 31
2.3 autopkgtest: Automatic testing for packages . 37
2.4 Getting the Source . 39
2.5 Working on a Package . 41
2.6 Seeking Review and Sponsorship . 43
2.7 Uploading a package . 44
2.8 Getting The Latest . 46
2.9 Merging — Updating from Debian and Upstream . 47
2.10 Using Chroots . 49
2.11 Traditional Packaging . 50
2.12 KDE Packaging . 52

3 Further Reading 54

i

Contents Ubuntu Packaging Guide

Welcome to the Ubuntu Packaging and Development Guide! This is the official place for learning all about Ubuntu
Development and packaging. After reading this guide you will have:

• heard about the most important players, processes and tools in Ubuntu development,

• your development environment set up correctly,

• a better idea of how to join our community,

• fixed an actual Ubuntu bug as part of the tutorials.

Ubuntu is not only a free and open source operating system, its platform is also open and developed in a transparent
fashion. The source code for every single component can be obtained easily and every single change to the Ubuntu
platform can be reviewed.

This means you can actively get involved in improving it and the community of Ubuntu platform developers is always
interested in helping peers getting started.

Ubuntu is also a community of great people who believe in free software and that it should be accessible for everyone.
Its members are welcoming and want you to be involved as well. We want you to get involved, to ask questions, to
make Ubuntu better together with us.

If you run into problems: don’t panic! Check out the communication article and you will find out how to most easily
get in touch with other developers.

The guide is split up into two sections:

• A list of articles based on tasks, things you want to get done.

• A set of knowledge-base articles that dig deeper into specific bits of our tools and workflows.

This guide focuses on the Ubuntu Distributed Development packaging method. This is a new way of packaging which
uses Distributed Revision Control branches. It currently has some limitations which mean many teams in Ubuntu use
traditional packaging methods. See the UDD Introduction page for an introduction to the differences.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 1

CHAPTER 1

Articles

1.1 Introduction to Ubuntu Development

Ubuntu is made up of thousands of different components, written in many different programming languages. Every
component - be it a software library, a tool or a graphical application - is available as a source package. Source
packages in most cases consist of two parts: the actual source code and metadata. Metadata includes the dependencies
of the package, copyright and licensing information, and instructions on how to build the package. Once this source
package is compiled, the build process provides binary packages, which are the .deb files users can install.

Every time a new version of an application is released, or when someone makes a change to the source code that
goes into Ubuntu, the source package must be uploaded to Launchpad’s build machines to be compiled. The re-
sulting binary packages then are distributed to the archive and its mirrors in different countries. The URLs in
/etc/apt/sources.list point to an archive or mirror. Every day images are built for a selection of differ-
ent Ubuntu flavours. They can be used in various circumstances. There are images you can put on a USB key, you
can burn them on DVDs, you can use netboot images and there are images suitable for your phone and tablet. Ubuntu
Desktop, Ubuntu Server, Kubuntu and others specify a list of required packages that get on the image. These images
are then used for installation tests and provide the feedback for further release planning.

Ubuntu’s development is very much dependent on the current stage of the release cycle. We release a new version of
Ubuntu every six months, which is only possible because we have established strict freeze dates. With every freeze
date that is reached developers are expected to make fewer, less intrusive changes. Feature Freeze is the first big freeze
date after the first half of the cycle has passed. At this stage features must be largely implemented. The rest of the
cycle is supposed to be focused on fixing bugs. After that the user interface, then the documentation, the kernel, etc.
are frozen, then the beta release is put out which receives a lot of testing. From the beta release onwards, only critical
bugs get fixed and a release candidate release is made and if it does not contain any serious problems, it becomes the
final release.

Thousands of source packages, billions of lines of code, hundreds of contributors require a lot of communication and
planning to maintain high standards of quality. At the beginning and in the middle of each release cycle we have the

2

1.1. Introduction to Ubuntu Development Ubuntu Packaging Guide

Ubuntu Developer Summit where developers and contributors come together to plan the features of the next releases.
Every feature is discussed by its stakeholders and a specification is written that contains detailed information about
its assumptions, implementation, the necessary changes in other places, how to test it and so on. This is all done in
an open and transparent fashion, so you can participate remotely and listen to a videocast, chat with attendants and
subscribe to changes of specifications, so you are always up to date.

Not every single change can be discussed in a meeting though, particularly because Ubuntu relies on changes that
are done in other projects. That is why contributors to Ubuntu constantly stay in touch. Most teams or projects
use dedicated mailing lists to avoid too much unrelated noise. For more immediate coordination, developers and
contributors use Internet Relay Chat (IRC). All discussions are open and public.

Another important tool regarding communication is bug reports. Whenever a defect is found in a package or piece of
infrastructure, a bug report is filed in Launchpad. All information is collected in that report and its importance, status
and assignee updated when necessary. This makes it an effective tool to stay on top of bugs in a package or project
and organise the workload.

Most of the software available through Ubuntu is not written by Ubuntu developers themselves. Most of it is written
by developers of other Open Source projects and then integrated into Ubuntu. These projects are called “Upstreams”,
because their source code flows into Ubuntu, where we “just” integrate it. The relationship to Upstreams is critically
important to Ubuntu. It is not just code that Ubuntu gets from Upstreams, but it is also that Upstreams get users, bug
reports and patches from Ubuntu (and other distributions).

The most important Upstream for Ubuntu is Debian. Debian is the distribution that Ubuntu is based on and many
of the design decisions regarding the packaging infrastructure are made there. Traditionally, Debian has always had
dedicated maintainers for every single package or dedicated maintenance teams. In Ubuntu there are teams that have
an interest in a subset of packages too, and naturally every developer has a special area of expertise, but participation
(and upload rights) generally is open to everyone who demonstrates ability and willingness.

Getting a change into Ubuntu as a new contributor is not as daunting as it seems and can be a very rewarding expe-
rience. It is not only about learning something new and exciting, but also about sharing the solution and solving a
problem for millions of users out there.

Open Source Development happens in a distributed world with different goals and different areas of focus. For example
there might be the case that a particular Upstream is interested in working on a new big feature while Ubuntu, because
of the tight release schedule, is interested in shipping a solid version with just an additional bug fix. That is why we
make use of “Distributed Development”, where code is being worked on in various branches that are merged with each
other after code reviews and sufficient discussion.

In the example mentioned above it would make sense to ship Ubuntu with the existing version of the project, add the
bugfix, get it into Upstream for their next release and ship that (if suitable) in the next Ubuntu release. It would be the
best possible compromise and a situation where everybody wins.

To fix a bug in Ubuntu, you would first get the source code for the package, then work on the fix, document it so it is
easy to understand for other developers and users, then build the package to test it. After you have tested it, you can
easily propose the change to be included in the current Ubuntu development release. A developer with upload rights
will review it for you and then get it integrated into Ubuntu.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 3

1.2. Getting Set Up Ubuntu Packaging Guide

When trying to find a solution it is usually a good idea to check with Upstream and see if the problem (or a possible
solution) is known already and, if not, do your best to make the solution a concerted effort.

Additional steps might involve getting the change backported to an older, still supported version of Ubuntu and for-
warding it to Upstream.

The most important requirements for success in Ubuntu development are: having a knack for “making things work
again,” not being afraid to read documentation and ask questions, being a team player and enjoying some detective
work.

Good places to ask your questions are ubuntu-motu@lists.ubuntu.com and #ubuntu-motu on
irc.freenode.net. You will easily find a lot of new friends and people with the same passion that you have:
making the world a better place by making better Open Source software.

1.2 Getting Set Up

There are a number of things you need to do to get started developing for Ubuntu. This article is designed to get your
computer set up so that you can start working with packages, and upload your packages to Ubuntu’s hosting platform,
Launchpad. Here’s what we’ll cover:

• Installing packaging-related software. This includes:

– Ubuntu-specific packaging utilities

– Encryption software so your work can be verified as being done by you

– Additional encryption software so you can securely transfer files

• Creating and configuring your account on Launchpad

• Setting up your development environment to help you do local builds of packages, interact with other developers,
and propose your changes on Launchpad.

Note: It is advisable to do packaging work using the current development version of Ubuntu. Doing so will allow
you to test changes in the same environment where those changes will actually be applied and used.

Don’t worry though, you can use Testdrive or chroots to safely use the development release.

1.2.1 Install basic packaging software

There are a number of tools that will make your life as an Ubuntu developer much easier. You will encounter these
tools later in this guide. To install most of the tools you will need run this command:

$ sudo apt-get install gnupg pbuilder ubuntu-dev-tools bzr-builddeb apt-file

Note: Since Ubuntu 11.10 “Oneiric Ocelot” (or if you have Backports enabled on a currently supported release), the
following command will install the above and other tools which are quite common in Ubuntu development:

$ sudo apt-get install packaging-dev

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 4

https://wiki.ubuntu.com/QATeam/Testdrive

1.2. Getting Set Up Ubuntu Packaging Guide

This command will install the following software:

• gnupg – GNU Privacy Guard contains tools you will need to create a cryptographic key with which you will
sign files you want to upload to Launchpad.

• pbuilder – a tool to do reproducible builds of a package in a clean and isolated environment.

• ubuntu-dev-tools (and devscripts, a direct dependency) – a collection of tools that make many pack-
aging tasks easier.

• bzr-builddeb (and bzr, a dependency) – distributed version control with Bazaar, a new way of working
with packages for Ubuntu that will make it easy for many developers to collaborate and work on the same code
while keeping it trivial to merge each other’s work.

• apt-file provides an easy way to find the binary package that contains a given file.

Create your GPG key

GPG stands for GNU Privacy Guard and it implements the OpenPGP standard which allows you to sign and encrypt
messages and files. This is useful for a number of purposes. In our case it is important that you can sign files with
your key so they can be identified as something that you worked on. If you upload a source package to Launchpad, it
will only accept the package if it can absolutely determine who uploaded the package.

To generate a new GPG key, run:

$ gpg --gen-key

GPG will first ask you which kind of key you want to generate. Choosing the default (RSA and DSA) is fine. Next it
will ask you about the keysize. The default (currently 2048) is fine, but 4096 is more secure. Afterwards, it will ask
you if you want it to expire the key at some stage. It is safe to say “0”, which means the key will never expire. The last
questions will be about your name and email address. Just pick the ones you are going to use for Ubuntu development
here, you can add additional email addresses later on. Adding a comment is not necessary. Then you will have to set
a passphrase, choose a safe one (a passphrase is just a password which is allowed to include spaces).

Now GPG will create a key for you, which can take a little bit of time; it needs random bytes, so if you give the system
some work to do it will be just fine. Move the cursor around, type some paragraphs of random text, load some web
page.

Once this is done, you will get a message similar to this one:

pub 4096R/43CDE61D 2010-12-06
Key fingerprint = 5C28 0144 FB08 91C0 2CF3 37AC 6F0B F90F 43CD E61D

uid Daniel Holbach <dh@mailempfang.de>
sub 4096R/51FBE68C 2010-12-06

In this case 43CDE61D is the key ID.

Next, you need to upload the public part of your key to a keyserver so the world can identify messages and files as
yours. To do so, enter:

$ gpg --send-keys --keyserver keyserver.ubuntu.com <KEY ID>

This will send your key to the Ubuntu keyserver, but a network of keyservers will automatically sync the key between
themselves. Once this syncing is complete, your signed public key will be ready to verify your contributions around
the world.

Create your SSH key

SSH stands for Secure Shell, and it is a protocol that allows you to exchange data in a secure way over a network. It

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 5

https://www.gnupg.org/
https://www.gnupg.org/
http://www.openssh.com/

1.2. Getting Set Up Ubuntu Packaging Guide

is common to use SSH to access and open a shell on another computer, and to use it to securely transfer files. For our
purposes, we will mainly be using SSH to securely upload source packages to Launchpad.

To generate an SSH key, enter:

$ ssh-keygen -t rsa

The default file name usually makes sense, so you can just leave it as it is. For security purposes, it is highly recom-
mended that you use a passphrase.

Set up pbuilder

pbuilder allows you to build packages locally on your machine. It serves a couple of purposes:

• The build will be done in a minimal and clean environment. This helps you make sure your builds succeed in a
reproducible way, but without modifying your local system

• There is no need to install all necessary build dependencies locally

• You can set up multiple instances for various Ubuntu and Debian releases

Setting pbuilder up is very easy, run:

$ pbuilder-dist <release> create

where <release> is for example raring, saucy, trusty or in the case of Debian maybe sid. This will take a while as it
will download all the necessary packages for a “minimal installation”. These will be cached though.

1.2.2 Get set up to work with Launchpad

With a basic local configuration in place, your next step will be to configure your system to work with Launchpad.
This section will focus on the following topics:

• What Launchpad is and creating a Launchpad account

• Uploading your GPG and SSH keys to Launchpad

• Configuring Bazaar to work with Launchpad

• Configuring Bash to work with Bazaar

About Launchpad

Launchpad is the central piece of infrastructure we use in Ubuntu. It not only stores our packages and our code,
but also things like translations, bug reports, and information about the people who work on Ubuntu and their team
memberships. You will also use Launchpad to publish your proposed fixes, and get other Ubuntu developers to review
and sponsor them.

You will need to register with Launchpad and provide a minimal amount of information. This will allow you to
download and upload code, submit bug reports, and more.

Besides hosting Ubuntu, Launchpad can host any Free Software project. For more information see the Launchpad
Help wiki.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 6

https://help.launchpad.net/
https://help.launchpad.net/

1.2. Getting Set Up Ubuntu Packaging Guide

Get a Launchpad account

If you don’t already have a Launchpad account, you can easily create one. If you have a Launchpad account but cannot
remember your Launchpad id, you can find this out by going to https://launchpad.net/~ and looking for the part after
the ~ in the URL.

Launchpad’s registration process will ask you to choose a display name. It is encouraged for you to use your real name
here so that your Ubuntu developer colleagues will be able to get to know you better.

When you register a new account, Launchpad will send you an email with a link you need to open in your browser in
order to verify your email address. If you don’t receive it, check in your spam folder.

The new account help page on Launchpad has more information about the process and additional settings you can
change.

Upload your GPG key to Launchpad

First, you will need to get your fingerprint and key ID.

To find about your GPG fingerprint, run:

$ gpg --fingerprint email@address.com

and it will print out something like:

pub 4096R/43CDE61D 2010-12-06
Key fingerprint = 5C28 0144 FB08 91C0 2CF3 37AC 6F0B F90F 43CD E61D

uid Daniel Holbach <dh@mailempfang.de>
sub 4096R/51FBE68C 2010-12-06

Then run this command to submit your key to Ubuntu keyserver:

$ gpg --keyserver keyserver.ubuntu.com --send-keys 43CDE61D

where 43CDE61D should be replaced by your key ID (which is in the first line of output of the previous command).
Now you can import your key to Launchpad.

Head to https://launchpad.net/~/+editpgpkeys and copy the “Key fingerprint” into the text box. In the case above this
would be 5C28 0144 FB08 91C0 2CF3 37AC 6F0B F90F 43CD E61D. Now click on “Import Key”.

Launchpad will use the fingerprint to check the Ubuntu key server for your key and, if successful, send you an
encrypted email asking you to confirm the key import. Check your email account and read the email that Launchpad
sent you. If your email client supports OpenPGP encryption, it will prompt you for the password you chose for the key
when GPG generated it. Enter the password, then click the link to confirm that the key is yours.

Launchpad encrypts the email, using your public key, so that it can be sure that the key is yours. If you are using
Thunderbird, the default Ubuntu email client, you can install the Enigmail plugin to easily decrypt the message. If
your email software does not support OpenPGP encryption, copy the encrypted email’s contents, type gpg in your
terminal, then paste the email contents into your terminal window.

Back on the Launchpad website, use the Confirm button and Launchpad will complete the import of your OpenPGP
key.

Find more information at https://help.launchpad.net/YourAccount/ImportingYourPGPKey

Upload your SSH key to Launchpad

Open https://launchpad.net/~/+editsshkeys in a web browser, also open ~/.ssh/id_rsa.pub in a text editor. This
is the public part of your SSH key, so it is safe to share it with Launchpad. Copy the contents of the file and paste them

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 7

https://launchpad.net/+login
https://launchpad.net/~
https://help.launchpad.net/YourAccount/NewAccount
https://launchpad.net/~/+editpgpkeys
https://apps.ubuntu.com/cat/applications/enigmail/
https://help.launchpad.net/YourAccount/ImportingYourPGPKey
https://launchpad.net/~/+editsshkeys

1.3. Ubuntu Distributed Development — Introduction Ubuntu Packaging Guide

into the text box on the web page that says “Add an SSH key”. Now click “Import Public Key”.

For more information on this process, visit the creating an SSH keypair page on Launchpad.

Configure Bazaar

Bazaar is the tool we use to store code changes in a logical way, to exchange proposed changes and merge them, even
if development is done concurrently. It is used for the new Ubuntu Distributed Development method of working with
Ubuntu packages.

To tell Bazaar who you are, simply run:

$ bzr whoami "Bob Dobbs <subgenius@example.com>"
$ bzr launchpad-login subgenius

whoami will tell Bazaar which name and email address it should use for your commit messages. With launchpad-login
you set your Launchpad ID. This way code that you publish in Launchpad will be associated with you.

Note: If you can not remember the ID, go to https://launchpad.net/~ and see where it redirects you. The part after the
“~” in the URL is your Launchpad ID.)

Configure your shell

Similar to Bazaar, the Debian/Ubuntu packaging tools need to learn about you as well. Simply open your ~/.bashrc in
a text editor and add something like this to the bottom of it:

export DEBFULLNAME="Bob Dobbs"
export DEBEMAIL="subgenius@example.com"

Now save the file and either restart your terminal or run:

$ source ~/.bashrc

(If you do not use the default shell, which is bash, please edit the configuration file for that shell accordingly.)

1.3 Ubuntu Distributed Development — Introduction

This guide focuses on packaging using the Ubuntu Distributed Development (UDD) method.

Ubuntu Distributed Development (UDD) is a new technique for developing Ubuntu packages that uses tools, processes,
and workflows similar to generic distributed version control system (DVCS) based software development. The DVCS
used for UDD is Bazaar.

1.3.1 Traditional Packaging Limitations

Traditionally Ubuntu packages have been kept in tar archive files. A traditional source package is made up of the
upstream source tar, a “debian” tar (or compressed diff file for older packages) containing the packaging and a .dsc
meta-data file. To see a traditional package run:

$ apt-get source kdetoys

This will download the upstream source kdetoys_4.6.5.orig.tar.bz2, the
packaging kdetoys_4.6.5-0ubuntu1.debian.tar.gz and the meta-data
kdetoys_4.6.5-0ubuntu1~ppa1.dsc. Assuming you have dpkg-dev installed it will extract these and
give you the source package.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 8

https://help.launchpad.net/YourAccount/CreatingAnSSHKeyPair
https://launchpad.net/~

1.3. Ubuntu Distributed Development — Introduction Ubuntu Packaging Guide

Traditional packaging would edit these files and upload. However this gives limited opportunity to collaborate with
other developers, changes have to be passed around as diff files with no central way to track them and two developers
can not make changes at the same time. So most teams have moved to putting their packaging in a revision control
system. This makes it easier for several developers to work on a package together. However there is no direct
connection between the revision control system and the archive packages so the two must be manually kept in sync.
Since each team works in its own revision control system a prospective developer must first work out where that is and
how to get the packaging before they can work on the package.

1.3.2 Ubuntu Distributed Development

With Ubuntu Distributed Development all packages in the Ubuntu (and Debian) archive are automatically imported
into Bazaar branches on our code hosting site Launchpad. Changes can be made directly to these branches in incre-
mental steps and by anyone with commit access. Changes can also be made in forked branches and merged back in
with Merge Proposals when they are large enough to need review or if they are by someone without direct commit
access.

UDD branches are all in a standard location, so doing a checkout is easy:

$ bzr branch ubuntu:kdetoys

The merge history includes two separate branches, one for the upstream source and one which adds the debian/
packaging directory:

$ cd kdetoys
$ bzr qlog

(This command uses qbzr for a GUI, run log instead of qlog for console output.)

This UDD branch of kdetoys shows the full packaging for each version uploaded to Ubuntu with grey circles and
the upstream source versions with green circles. Versions are tagged with either the version in Ubuntu such as
4:4.2.29-0ubuntu1 or for the upstream branch with the upstream version upstream-4.2.96.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 9

1.3. Ubuntu Distributed Development — Introduction Ubuntu Packaging Guide

Many Ubuntu packages are based on the packages in Debian, UDD also imports the Debian package into our branches.
In the kdetoys branch above the Debian versions from unstable are from the merge with blue circles while those from
Debian experimental are from the merge with yellow circles. Debian releases are tagged with their version number,
e.g., 4:4.2.2-1.

So from a UDD branch you can see the complete history of changes to the package and compare any two versions.
For example, to see the changes between version 4.2.2 in Debian and the 4.2.2 in Ubuntu use:

$ bzr qdiff -r tag:4:4.2.2-1..tag:4:4.2.2-1ubuntu1

(This command uses qbzr for a GUI, run diff instead of qdiff for console output.)

From this we can clearly see what has changed in Ubuntu compared to Debian, very handy.

1.3.3 Bazaar

UDD branches use Bazaar, a distributed revision control system intended to be easy to use for those familiar with
popular systems such as Subversion while offering the power of Git.

To do packaging with UDD you will need to know the basics of how to use Bazaar to manage files. For an introduction
to Bazaar see the Bazaar Five Minute Tutorial and the Bazaar Users Guide.

1.3.4 Limitations of UDD

Ubuntu Distributed Development is a new method for working with Ubuntu packages. It currently has some notable
limitations:

• Doing a full branch with history can take a lot of time and network resources. You may find it quicker to do a
lightweight checkout bzr checkout --lightweight ubuntu:kdetoys but this will need a network
access for any further bzr operations.

• Working with patches is fiddly. Patches can be seen as a branched revision control system, so we end up with
RCS on top of RCS.

• There is no way to build directly from branches. You need to create a source package and upload that.

• Some packages have not been successfully imported into UDD branches. Recent versions of Bazaar will au-
tomatically notify you when this is the case. You can also check the status of the package importer manually
before working on a branch.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 10

http://doc.bazaar.canonical.com/bzr.dev/en/mini-tutorial/index.html
http://doc.bazaar.canonical.com/bzr.dev/en/user-guide/index.html
http://package-import.ubuntu.com/status

1.4. Fixing a bug in Ubuntu Ubuntu Packaging Guide

All of the above are being worked on and UDD is expected to become the main way to work on Ubuntu packages soon.
However currently most teams within Ubuntu do not yet work with UDD branches for their development. However
because UDD branches are the same as the packages in the archive any team should be able to accept merges against
them.

1.4 Fixing a bug in Ubuntu

1.4.1 Introduction

If you followed the instructions to get set up with Ubuntu Development, you should be all set and ready to go.

As you can see in the image above, there is no surprises in the process of fixing bugs in Ubuntu: you found a problem,
you get the code, work on the fix, test it, push your changes to Launchpad and ask for it to be reviewed and merged.
In this guide we will go through all the necessary steps one by one.

1.4.2 Finding the problem

There are a lot of different ways to find things to work on. It might be a bug report you are encountering yourself
(which gives you a good opportunity to test the fix), or a problem you noted elsewhere, maybe in a bug report.

Harvest is where we keep track of various TODO lists regarding Ubuntu development. It lists bugs that were fixed
upstream or in Debian already, lists small bugs (we call them ‘bitesize’), and so on. Check it out and find your first
bug to work on.

1.4.3 Figuring out what to fix

If you don’t know the source package containing the code that has the problem, but you do know the path to the
affected program on your system, you can discover the source package that you’ll need to work on.

Let’s say you’ve found a bug in Tomboy, a note taking desktop application. The Tomboy application can be started by
running /usr/bin/tomboy on the command line. To find the binary package containing this application, use this
command:

$ apt-file find /usr/bin/tomboy

This would print out:

tomboy: /usr/bin/tomboy

Note that the part preceding the colon is the binary package name. It’s often the case that the source package and
binary package will have different names. This is most common when a single source package is used to build
multiple different binary packages. To find the source package for a particular binary package, type:

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 11

http://harvest.ubuntu.com/

1.4. Fixing a bug in Ubuntu Ubuntu Packaging Guide

$ apt-cache showsrc tomboy | grep ^Package:
Package: tomboy
$ apt-cache showsrc python-vigra | grep ^Package:
Package: libvigraimpex

apt-cache is part of the standard installation of Ubuntu.

1.4.4 Getting the code

Once you know the source package to work on, you will want to get a copy of the code on your system, so that you
can debug it. In Ubuntu Distributed Development this is done by branching the source package branch corresponding
to the source package. Launchpad maintains source package branches for all the packages in Ubuntu.

Once you’ve got a local branch of the source package, you can investigate the bug, create a fix, and upload your
proposed fix to Launchpad, in the form of a Bazaar branch. When you are happy with your fix, you can submit a
merge proposal, which asks other Ubuntu developers to review and approve your change. If they agree with your
changes, an Ubuntu developer will upload the new version of the package to Ubuntu so that everyone gets the benefit
of your excellent fix - and you get a little bit of credit. You’re now on your way to becoming an Ubuntu developer!

We’ll describe specifics on how to branch the code, push your fix, and request a review in the following sections.

1.4.5 Work on a fix

There are entire books written about finding bugs, fixing them, testing them, etc. If you are completely new to
programming, try to fix easy bugs such as obvious typos first. Try to keep changes as minimal as possible and
document your change and assumptions clearly.

Before working on a fix yourself, make sure to investigate if nobody else has fixed it already or is currently working
on a fix. Good sources to check are:

• Upstream (and Debian) bug tracker (open and closed bugs),

• Upstream revision history (or newer release) might have fixed the problem,

• bugs or package uploads of Debian or other distributions.

You now want to create a patch which includes the fix. The command edit-patch is a simple way to add a patch
to a package. Run:

$ edit-patch 99-new-patch

This will copy the packaging to a temporary directory. You can now edit files with a text editor or apply patches from
upstream, for example:

$ patch -p1 < ../bugfix.patch

After editing the file type exit or press control-d to quit the temporary shell. The new patch will have been
added into debian/patches.

1.4.6 Testing the fix

To build a test package with your changes, run these commands:

$ bzr builddeb -- -S -us -uc
$ pbuilder-dist <release> build ../<package>_<version>.dsc

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 12

1.4. Fixing a bug in Ubuntu Ubuntu Packaging Guide

This will create a source package from the branch contents (-us -uc will just omit the step to sign the source
package) and pbuilder-dist will build the package from source for whatever release you choose.

Once the build succeeds, install the package from ~/pbuilder/<release>_result/ (using sudo dpkg -i
<package>_<version>.deb). Then test to see if the bug is fixed.

Documenting the fix

It is very important to document your change sufficiently so developers who look at the code in the future won’t have to
guess what your reasoning was and what your assumptions were. Every Debian and Ubuntu package source includes
debian/changelog, where changes of each uploaded package are tracked.

The easiest way to update this is to run:

$ dch -i

This will add a boilerplate changelog entry for you and launch an editor where you can fill in the blanks. An example
of this could be:

specialpackage (1.2-3ubuntu4) trusty; urgency=low

* debian/control: updated description to include frobnicator (LP: #123456)

-- Emma Adams <emma.adams@isp.com> Sat, 17 Jul 2010 02:53:39 +0200

dch should fill out the first and last line of such a changelog entry for you already. Line 1 consists of the source
package name, the version number, which Ubuntu release it is uploaded to, the urgency (which almost always is
‘low’). The last line always contains the name, email address and timestamp (in RFC 5322 format) of the change.

With that out of the way, let’s focus on the actual changelog entry itself: it is very important to document:

1. where the change was done

2. what was changed

3. where the discussion of the change happened

In our (very sparse) example the last point is covered by (LP: #123456) which refers to Launchpad bug 123456.
Bug reports or mailing list threads or specifications are usually good information to provide as a rationale for a change.
As a bonus, if you use the LP: #<number> notation for Launchpad bugs, the bug will be automatically closed when
the package is uploaded to Ubuntu.

Committing the fix

With the changelog entry written and saved, you can just run:

debcommit

and the change will be committed (locally) with your changelog entry as a commit message.

To push it to Launchpad, as the remote branch name, you need to stick to the following nomenclature:

lp:~<yourlpid>/ubuntu/<release>/<package>/<branchname>

This could for example be:

lp:~emmaadams/ubuntu/trusty/specialpackage/fix-for-123456

So if you just run:

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 13

https://tools.ietf.org/html/rfc5322.html

1.5. Tutorial: Fixing a bug in Ubuntu Ubuntu Packaging Guide

bzr push lp:~emmaadams/ubuntu/trusty/specialpackage/fix-for-123456
bzr lp-propose

you should be all set. The push command should push it to Launchpad and the second command will open the
Launchpad page of the remote branch in your browser. There find the “(+) Propose for merging” link, click it to get
the change reviewed by somebody and included in Ubuntu.

Our article about seeking sponsorship goes into more detail about getting feedback for your proposed changes.

If your branch fixes issues in stable releases or it is a security fix, you might want to have a look at our Security and
stable release updates article.

1.5 Tutorial: Fixing a bug in Ubuntu

While the mechanics for fixing a bug are the same for every bug, every problem you look at is likely to be different
from another. An example of a concrete problem might help to get an idea what to consider generally.

Note: At the time of writing this article this was not fixed yet. When you are reading the article this might actually
be fixed. Take this as an example and try to adapt it to the specific problem you are facing.

1.5.1 Confirming the problem

Let’s say the package bumprace does not have a homepage in its package description. As a first step you would
check if the problem is not solved already. This is easy to check, either take a look at Software Center or run:

apt-cache show bumprace

The output should be similar to this:

Package: bumprace
Priority: optional
Section: universe/games
Installed-Size: 136
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer: Christian T. Steigies <cts@debian.org>
Architecture: amd64
Version: 1.5.4-1
Depends: bumprace-data, libc6 (>= 2.4), libsdl-image1.2 (>= 1.2.10),

libsdl-mixer1.2, libsdl1.2debian (>= 1.2.10-1)
Filename: pool/universe/b/bumprace/bumprace_1.5.4-1_amd64.deb
Size: 38122
MD5sum: 48c943863b4207930d4a2228cedc4a5b
SHA1: 73bad0892be471bbc471c7a99d0b72f0d0a4babc
SHA256: 64ef9a45b75651f57dc76aff5b05dd7069db0c942b479c8ab09494e762ae69fc
Description-en: 1 or 2 players race through a multi-level maze
In BumpRacer, 1 player or 2 players (team or competitive) choose among 4
vehicles and race through a multi-level maze. The players must acquire
bonuses and avoid traps and enemy fire in a race against the clock.
For more info, see the homepage at http://www.linux-games.com/bumprace/

Description-md5: 3225199d614fba85ba2bc66d5578ff15
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Origin: Ubuntu

A counter-example would be gedit, which has a homepage set:

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 14

1.5. Tutorial: Fixing a bug in Ubuntu Ubuntu Packaging Guide

$ apt-cache show gedit | grep ^Homepage
Homepage: http://www.gnome.org/projects/gedit/
$

Sometimes you will find that a particular problem you are looking into is already fixed. To avoid wasting efforts and
duplicating work it makes sense to first do some detective work.

1.5.2 Research bug situation

First we should check if a bug for the problem exists in Ubuntu already. Maybe somebody is working
on a fix already, or we can contribute to the solution somehow. For Ubuntu we have a quick look at
https://bugs.launchpad.net/ubuntu/+source/bumprace and there is no open bug with our problem there.

Note: For Ubuntu the URL https://bugs.launchpad.net/ubuntu/+source/<package> should al-
ways take to the bug page of the source package in question.

For Debian, which is the major source for Ubuntu’s packages, we have a look at http://bugs.debian.org/src:bumprace
and can’t find a bug report for our problem either.

Note: For Debian the URL http://bugs.debian.org/src:<package> should always take to the bug page
of the source package in question.

The problem we are working on is special as it only concerns the packaging-related bits of bumprace. If it was a
problem in the source code it would be helpful to also check the Upstream bug tracker. This is unfortunately often
different for every package you have a look at, but if you search the web for it, you should in most cases find it pretty
easily.

1.5.3 Offering help

If you found an open bug and it is not assigned to somebody and you are in a position to fix it, you should comment
on it with your solution. Be sure to include as much information as you can: Under which circumstances does the bug
occur? How did you fix the problem? Did you test your solution?

If no bug report has been filed, you can file a bug for it. What you might want to bear in mind is: Is the issue so small
that just asking for somebody to commit it is good enough? Did you manage to only partially fix the issue and you
want to at least share your part of it?

It is great if you can offer help and will surely be appreciated.

1.5.4 Fixing the issue

For this specific example it is enough to search the web for bumprace and find the homepage of it. Be sure it is a
live site and not just a software catalogue. http://www.linux-games.com/bumprace/ looks like it is the proper place.

To address the issue in the source package, we first need the source and we can easily get it by running:

bzr branch ubuntu:bumprace

If you read the Debian Directory Overview before, you might remember, that the homepage for a package is specified
in the first part of debian/control, the section which starts with Source:.

So what we do next is run:

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 15

https://bugs.launchpad.net/ubuntu/+source/bumprace
http://bugs.debian.org/src:bumprace
http://www.linux-games.com/bumprace/

1.5. Tutorial: Fixing a bug in Ubuntu Ubuntu Packaging Guide

cd bumprace

and edit debian/control to add Homepage: http://www.linux-games.com/bumprace/. At the
end of the first section should be a good place for it. Once you have done this, save the file.

If you now run:

bzr diff

you should see something like this:

=== modified file 'debian/control'
--- debian/control 2012-05-14 23:38:14 +0000
+++ debian/control 2012-09-03 15:45:30 +0000
@@ -12,6 +12,7 @@

libtool,
zlib1g-dev

Standards-Version: 3.9.3
+Homepage: http://www.linux-games.com/bumprace/

Package: bumprace
Architecture: any

The diff is pretty simple to understand. The + indicates a line which was added. In our cases it was added just before
the second section, starting with Package, which indicates a resulting binary package.

1.5.5 Documenting the fix

It is important to explain to your fellow developers what exactly you did. If you run:

dch -i

this will start an editor with a boilerplate changelog entry which you just have to fill out. In our case something like
debian/control: Added project’s homepage. should do. Then save the file. To double-check this
worked out, run:

bzr diff debian/changelog

and you will see something like this:

=== modified file 'debian/changelog'
--- debian/changelog 2012-05-14 23:38:14 +0000
+++ debian/changelog 2012-09-03 15:53:52 +0000
@@ -1,3 +1,9 @@
+bumprace (1.5.4-1ubuntu1) UNRELEASED; urgency=low
+
+ * debian/control: Added project's homepage.
+
+ -- Peggy Sue <peggy.sue@example.com> Mon, 03 Sep 2012 17:53:12 +0200
+
bumprace (1.5.4-1) unstable; urgency=low

* new upstream version, sound and music have been removed (closes: #613344)

A few additional considerations:

• If you have a reference to a Launchpad bug which is fixed by the issue, add (LP: #<bug number>) to the
changelog entry line, ie: (LP: #123456).

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 16

1.5. Tutorial: Fixing a bug in Ubuntu Ubuntu Packaging Guide

• If you want to get your fix included in Debian, for a Debian bug the syntax is (Closes: #<bug
number>), ie: (Closes: #123456).

• If it is a reference to an upstream or Debian bug or a mailing list discussion, mention it as well.

• Try to wrap your lines at 80 characters.

• Try to be specific, not an essay, but enough for somebody (who did not deeply look into the issue) to understand.

• Mention how you fixed the issue and where.

1.5.6 Testing the fix

To test the fix, you need to have your development environment set up, then to build the package, install it and verify
the problem is solved. In our case this would be:

bzr bd -- -S
pbuilder-dist <current Ubuntu release> build ../bumprace_*.dsc
dpkg -I ~/pbuilder/*_result/bumprace_*.deb

In step one we build the source package from the branch, then build it by using pbuilder, then inspect the resulting
package to check if the Homepage field was added properly.

Note: In a lot of cases you will have to actually install the package to make sure it works as expected. Our case is a
lot easier. If the build succeeded, you will find the binary packages in ~/pbuilder/<release>_result. Install
them via sudo dpkg -i <package>.deb or by double-clicking on them in your file manager.

As we verified, the problem is now solved, so the next step is sharing our solution with the world.

1.5.7 Getting the fix included

It makes sense to get the fix included as Upstream as possible. Doing that you can guarantee that everybody can take
the Upstream source as-is and don’t need to have local modifications to fix it.

In our case we established that we have a problem with the packaging, both in Ubuntu and Debian. As Ubuntu is based
on Debian, we will send the fix to Debian. Once it is included there, it will be picked up by Ubuntu eventually. The
issue in our tutorial is clearly non-critical, so this approach makes sense. If it is important to fix the issue as soon as
possible, you will need to send the solution to multiple bug trackers. Provided the issue affects all parties in question.

To submit the patch to Debian, simply run:

submittodebian

This will take you through a series of steps to make sure the bug ends up in the correct place. Be sure to review the
diff again to make sure it does not include random changes you made earlier.

Communication is important, so when you add some more description to it to the inclusion request, be friendly, explain
it well.

If everything went well you should get a mail from Debian’s bug tracking system with more information. This might
sometimes take a few minutes.

Note: If the problem is just in Ubuntu, you might want to consider Seeking Review and Sponsorship to get the fix
included.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 17

1.6. Packaging New Software Ubuntu Packaging Guide

1.5.8 Additional considerations

If you find a package and find that there are a couple of trivial things you can fix at the same time, do it. This will
speed up review and inclusion.

If there are multiple big things you want to fix, it might be advisable to send individual patches or merge proposals
instead. If there are individual bugs filed for the issues already, this makes it even easier.

1.6 Packaging New Software

While there are thousands of packages in the Ubuntu archive, there are still a lot nobody has gotten to yet. If there is
an exciting new piece of software that you feel needs wider exposure, maybe you want to try your hand at creating a
package for Ubuntu or a PPA. This guide will take you through the steps of packaging new software.

You will want to read the Getting Set Up article first in order to prepare your development environment.

1.6.1 Checking the Program

The first stage in packaging is to get the released tar from upstream (we call the authors of applications “upstream”)
and check that it compiles and runs.

This guide will take you through packaging a simple application called GNU Hello which has been posted on GNU.org.

If you don’t have the build tools lets make sure we have them first. Also if you don’t have the required dependencies
lets install those as well.

Install build tools:

$ sudo apt-get install build-essential

Download main package:

$ wget -O hello-2.7.tar.gz "http://ftp.gnu.org/gnu/hello/hello-2.7.tar.gz"

Now uncompress main package:

$ tar xf hello-2.7.tar.gz
$ cd hello-2.7

This application uses the autoconf build system so we want to run ./configure to prepare for compilation.

This will check for the required build dependencies. As hello is a simple example, build-essential should
provide everything we need. For more complex programs, the command will fail if you do not have the needed libraries
and development files. Install the needed packages and repeat until the command runs successfully.:

$./configure

Now you can compile the source:

$ make

If compilation completes successfully you can install and run the program:

$ sudo make install
$ hello

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 18

https://help.launchpad.net/Packaging/PPA
http://www.gnu.org/software/hello/

1.6. Packaging New Software Ubuntu Packaging Guide

1.6.2 Starting a Package

bzr-builddeb includes a plugin to create a new package from a template. The plugin is a wrapper around the
dh_make command. You should already have these if you installed packaging-dev. Run the command providing
the package name, version number, and path to the upstream tarball:

$ sudo apt-get install dh-make bzr-builddeb
$ cd ..
$ bzr dh-make hello 2.7 hello-2.7.tar.gz

When it asks what type of package type s for single binary. This will import the code into a branch and add the
debian/ packaging directory. Have a look at the contents. Most of the files it adds are only needed for specialist
packages (such as Emacs modules) so you can start by removing the optional example files:

$ cd hello/debian
$ rm *ex *EX

You should now customise each of the files.

In debian/changelog change the version number to an Ubuntu version: 2.7-0ubuntu1 (upstream version 2.7,
Debian version 0, Ubuntu version 1). Also change unstable to the current development Ubuntu release such as
trusty.

Much of the package building work is done by a series of scripts called debhelper. The exact behaviour of
debhelper changes with new major versions, the compat file instructs debhelper which version to act as. You
will generally want to set this to the most recent version which is 9.

control contains all the metadata of the package. The first paragraph describes the source package. The second and
following paragraphs describe the binary packages to be built. We will need to add the packages needed to compile
the application to Build-Depends:. For hello, make sure that it includes at least:

Build-Depends: debhelper (>= 9)

You will also need to fill in a description of the program in the Description: field.

copyright needs to be filled in to follow the licence of the upstream source. According to the hello/COPYING file
this is GNU GPL 3 or later.

docs contains any upstream documentation files you think should be included in the final package.

README.source and README.Debian are only needed if your package has any non-standard features, we don’t
so you can delete them.

source/format can be left as is, this describes the version format of the source package and should be 3.0
(quilt).

rules is the most complex file. This is a Makefile which compiles the code and turns it into a binary package.
Fortunately most of the work is automatically done these days by debhelper 7 so the universal % Makefile target
just runs the dh script which will run everything needed.

All of these file are explained in more detail in the overview of the debian directory article.

Finally commit the code to your packaging branch:

$ bzr add debian/source/format
$ bzr commit -m "Initial commit of Debian packaging."

1.6.3 Building the package

Now we need to check that our packaging successfully compiles the package and builds the .deb binary package:

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 19

1.6. Packaging New Software Ubuntu Packaging Guide

$ bzr builddeb -- -us -uc
$ cd ../../

bzr builddeb is a command to build the package in its current location. The -us -uc tell it there is no need to
GPG sign the package. The result will be placed in ...

You can view the contents of the package with:

$ lesspipe hello_2.7-0ubuntu1_amd64.deb

Install the package and check it works (later you will be able to uninstall it using sudo apt-get remove hello
if you want):

$ sudo dpkg --install hello_2.7-0ubuntu1_amd64.deb

You can also install all packages at once using:

$ sudo debi

1.6.4 Next Steps

Even if it builds the .deb binary package, your packaging may have bugs. Many errors can be automatically detected
by our tool lintian which can be run on the source .dsc metadata file, .deb binary packages or .changes file:

$ lintian hello_2.7-0ubuntu1.dsc
$ lintian hello_2.7-0ubuntu1_amd64.deb

To see verbose description of the problems use --info lintian flag or lintian-info command.

Results of Ubuntu archive checks can be found online on http://lintian.ubuntuwire.org.

For Python packages, there is also a lintian4python tool that provides some additional lintian checks.

After making a fix to the packaging you can rebuild using -nc “no clean” without having to build from scratch:

$ bzr builddeb -- -nc -us -uc

Having checked that the package builds locally you should ensure it builds on a clean system using pbuilder. Since
we are going to upload to a PPA (Personal Package Archive) shortly, this upload will need to be signed to allow
Launchpad to verify that the upload comes from you (you can tell the upload will be signed because the -us and -uc
flags are not passed to bzr builddeb like they were before). For signing to work you need to have set up GPG. If
you haven’t set up pbuilder-dist or GPG yet, do so now:

$ bzr builddeb -S
$ cd ../build-area
$ pbuilder-dist trusty build hello_2.7-0ubuntu1.dsc

When you are happy with your package you will want others to review it. You can upload the branch to Launchpad
for review:

$ bzr push lp:~<lp-username>/+junk/hello-package

Uploading it to a PPA will ensure it builds and give an easy way for you and others to test the binary packages. You
will need to set up a PPA in Launchpad and then upload with dput:

$ dput ppa:<lp-username>/<ppa-name> hello_2.7-0ubuntu1.changes

See uploading for more information.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 20

http://lintian.ubuntuwire.org

1.7. Security and Stable Release Updates Ubuntu Packaging Guide

You can ask for reviews in #ubuntu-motu IRC channel, or on the MOTU mailing list. There might also be a more
specific team you could ask such as the GNU team for more specific questions.

1.6.5 Submitting for inclusion

There are a number of paths that a package can take to enter Ubuntu. In most cases, going through Debian first can be
the best path. This way ensures that your package will reach the largest number of users as it will be available in not
just Debian and Ubuntu but all of their derivatives as well. Here are some useful links for submitting new packages to
Debian:

• Debian Mentors FAQ - debian-mentors is for the mentoring of new and prospective Debian Developers. It is
where you can find a sponsor to upload your package to the archive.

• Work-Needing and Prospective Packages - Information on how to file “Intent to Package” and “Request for
Package” bugs as well as list of open ITPs and RFPs.

• Debian Developer’s Reference, 5.1. New packages - The entire document is invaluable for both Ubuntu and
Debian packagers. This section documents processes for submitting new packages.

In some cases, it might make sense to go directly into Ubuntu first. For instance, Debian might be in a freeze making
it unlikely that your package will make it into Ubuntu in time for the next release. This process is documented on the
“New Packages” section of the Ubuntu wiki.

1.6.6 Screenshots

Once you have uploaded a package to debian, you should add screenshots to allow propective users to see what the
program is like. These should be uploaded to http://screenshots.debian.net/upload .

1.7 Security and Stable Release Updates

1.7.1 Fixing a Security Bug in Ubuntu

Introduction

Fixing security bugs in Ubuntu is not really any different than fixing a regular bug in Ubuntu, and it is assumed that
you are familiar with patching normal bugs. To demonstrate where things are different, we will be updating the dbus
package in Ubuntu 12.04 LTS (Precise Pangolin) for a security update.

Obtaining the source

In this example, we already know we want to fix the dbus package in Ubuntu 12.04 LTS (Precise Pangolin). So first
you need to determine the version of the package you want to download. We can use the rmadison to help with this:

$ rmadison dbus | grep precise
dbus | 1.4.18-1ubuntu1 | precise | source, amd64, armel, armhf, i386, powerpc
dbus | 1.4.18-1ubuntu1.4 | precise-security | source, amd64, armel, armhf, i386, powerpc
dbus | 1.4.18-1ubuntu1.4 | precise-updates | source, amd64, armel, armhf, i386, powerpc

Typically you will want to choose the highest version for the release you want to patch that is not in -proposed or
-backports. Since we are updating Precise’s dbus, you’ll download 1.4.18-1ubuntu1.4 from precise-updates:

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 21

https://lists.ubuntu.com/mailman/listinfo/ubuntu-motu
https://wiki.debian.org/DebianMentorsFaq
http://www.debian.org/devel/wnpp/
http://www.debian.org/doc/manuals/developers-reference/pkgs.html#newpackage
https://wiki.ubuntu.com/UbuntuDevelopment/NewPackages
http://screenshots.debian.net/upload

1.7. Security and Stable Release Updates Ubuntu Packaging Guide

$ bzr branch ubuntu:precise-updates/dbus

Patching the source

Now that we have the source package, we need to patch it to fix the vulnerability. You may use whatever patch method
that is appropriate for the package, including UDD techniques, but this example will use edit-patch (from the
ubuntu-dev-tools package). edit-patch is the easiest way to patch packages and it is basically a wrapper around
every other patch system you can imagine.

To create your patch using edit-patch:

$ cd dbus
$ edit-patch 99-fix-a-vulnerability

This will apply the existing patches and put the packaging in a temporary directory. Now edit the files needed to fix
the vulnerability. Often upstream will have provided a patch so you can apply that patch:

$ patch -p1 < /home/user/dbus-vulnerability.diff

After making the necessary changes, you just hit Ctrl-D or type exit to leave the temporary shell.

Formatting the changelog and patches

After applying your patches you will want to update the changelog. The dch command is used to edit the
debian/changelog file and edit-patch will launch dch automatically after un-applying all the patches. If
you are not using edit-patch, you can launch dch -i manually. Unlike with regular patches, you should use
the following format (note the distribution name uses precise-security since this is a security update for Precise) for
security updates:

dbus (1.4.18-2ubuntu1.5) precise-security; urgency=low

* SECURITY UPDATE: [DESCRIBE VULNERABILITY HERE]
- debian/patches/99-fix-a-vulnerability.patch: [DESCRIBE CHANGES HERE]
- [CVE IDENTIFIER]
- [LINK TO UPSTREAM BUG OR SECURITY NOTICE]
- LP: #[BUG NUMBER]

...

Update your patch to use the appropriate patch tags. Your patch should have at a minimum the Origin, Description
and Bug-Ubuntu tags. For example, edit debian/patches/99-fix-a-vulnerability.patch to have something like:

Description: [DESCRIBE VULNERABILITY HERE]
Origin/Author: [COMMIT ID, URL OR EMAIL ADDRESS OF AUTHOR]
Bug: [UPSTREAM BUG URL]
Bug-Ubuntu: https://launchpad.net/bugs/[BUG NUMBER]
Index: dbus-1.4.18/dbus/dbus-marshal-validate.c
...

Multiple vulnerabilities can be fixed in the same security upload; just be sure to use different patches for different
vulnerabilities.

Test and Submit your work

At this point the process is the same as for fixing a regular bug in Ubuntu. Specifically, you will want to:

1. Build your package and verify that it compiles without error and without any added compiler warnings

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 22

1.8. Patches to Packages Ubuntu Packaging Guide

2. Upgrade to the new version of the package from the previous version

3. Test that the new package fixes the vulnerability and does not introduce any regressions

4. Submit your work via a Launchpad merge proposal and file a Launchpad bug being sure to mark the bug as a
security bug and to subscribe ubuntu-security-sponsors

If the security vulnerability is not yet public then do not file a merge proposal and ensure you mark the bug as private.

The filed bug should include a Test Case, i.e. a comment which clearly shows how to recreate the bug by running the
old version then how to ensure the bug no longer exists in the new version.

The bug report should also confirm that the issue is fixed in Ubuntu versions newer than the one with the proposed
fix (in the above example newer than Precise). If the issue is not fixed in newer Ubuntu versions you should prepare
updates for those versions too.

1.7.2 Stable Release Updates

We also allow updates to releases where a package has a high impact bug such as a severe regression from a previous
release or a bug which could cause data loss. Due to the potential for such updates to themselves introduce bugs we
only allow this where the change can be easily understood and verified.

The process for Stable Release Updates is just the same as the process for security bugs except you should subscribe
ubuntu-sru to the bug.

The update will go into the proposed archive (for example precise-proposed) where it will need to be checked
that it fixes the problem and does not introduce new problems. After a week without reported problems it can be moved
to updates.

See the Stable Release Updates wiki page for more information.

1.8 Patches to Packages

Sometimes, Ubuntu package maintainers have to change the upstream source code in order to make it work properly
on Ubuntu. Examples include, patches to upstream that haven’t yet made it into a released version, or changes to the
upstream’s build system needed only for building it on Ubuntu. We could change the upstream source code directly,
but doing this makes it more difficult to remove the patches later when upstream has incorporated them, or extract the
change to submit to the upstream project. Instead, we keep these changes as separate patches, in the form of diff files.

There are a number of different ways of handling patches in Debian packages, fortunately we are standardizing on one
system, Quilt, which is now used by most packages.

Let’s look at an example package, kamoso in Trusty:

$ bzr branch ubuntu:trusty/kamoso

The patches are kept in debian/patches. This package has one patch
kubuntu_01_fix_qmax_on_armel.diff to fix a compile failure on ARM. The patch has been given a
name to describe what it does, a number to keep the patches in order (two patches can overlap if they change the same
file) and in this case the Kubuntu team adds their own prefix to show the patch comes from them rather than from
Debian.

The order of patches to apply is kept in debian/patches/series.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 23

https://wiki.ubuntu.com/StableReleaseUpdates
https://wiki.debian.org/UsingQuilt

1.8. Patches to Packages Ubuntu Packaging Guide

1.8.1 Patches with Quilt

Before working with Quilt you need to tell it where to find the patches. Add this to your ~/.bashrc:

export QUILT_PATCHES=debian/patches

And source the file to apply the new export:

$. ~/.bashrc

By default all patches are applied already to UDD checkouts or downloaded packages. You can check this with:

$ quilt applied
kubuntu_01_fix_qmax_on_armel.diff

If you wanted to remove the patch you would run pop:

$ quilt pop
Removing patch kubuntu_01_fix_qmax_on_armel.diff
Restoring src/kamoso.cpp

No patches applied

And to apply a patch you use push:

$ quilt push
Applying patch kubuntu_01_fix_qmax_on_armel.diff
patching file src/kamoso.cpp

Now at patch kubuntu_01_fix_qmax_on_armel.diff

1.8.2 Adding a New Patch

To add a new patch you need to tell Quilt to create a new patch, tell it which files that patch should change, edit the
files then refresh the patch:

$ quilt new kubuntu_02_program_description.diff
Patch kubuntu_02_program_description.diff is now on top
$ quilt add src/main.cpp
File src/main.cpp added to patch kubuntu_02_program_description.diff
$ sed -i "s,Webcam picture retriever,Webcam snapshot program,"
src/main.cpp
$ quilt refresh
Refreshed patch kubuntu_02_program_description.diff

The quilt add step is important, if you forget it the files will not end up in the patch.

The change will now be in debian/patches/kubuntu_02_program_description.diff and the
series file will have had the new patch added to it. You should add the new file to the packaging:

$ bzr add debian/patches/kubuntu_02_program_description.diff
$ bzr add .pc/*
$ dch -i "Add patch kubuntu_02_program_description.diff to improve the program description"
$ bzr commit

Quilt keeps its metadata in the .pc/ directory, so currently you need to add that to the packaging too. This should be
improved in future.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 24

1.8. Patches to Packages Ubuntu Packaging Guide

As a general rule you should be careful adding patches to programs unless they come from upstream, there is often
a good reason why that change has not already been made. The above example changes a user interface string for
example, so it would break all translations. If in doubt, do ask the upstream author before adding a patch.

1.8.3 Patch Headers

We recommend that you tag every patch with DEP-3 headers by putting them at the top of patch file. Here are some
headers that you can use:

Description Description of what the patch does. It is formatted like Description field in
debian/control: first line is short description, starting with lowercase letter, the next lines
are long description, indented with a space.

Author Who wrote the patch (i.e. “Jane Doe <packager@example.com>”).

Origin Where this patch comes from (i.e. “upstream”), when Author is not present.

Bug-Ubuntu A link to Launchpad bug, a short form is preferred (like
https://bugs.launchpad.net/bugs/XXXXXXX). If there are also bugs in upstream or Debian
bugtrackers, add Bug or Bug-Debian headers.

Forwarded Whether the patch was forwarded upstream. Either “yes”, “no” or “not-needed”.

Last-Update Date of the last revision (in form “YYYY-MM-DD”).

1.8.4 Upgrading to New Upstream Versions

To upgrade to the new version, you can use bzr merge-upstream command:

$ bzr merge-upstream --version 2.0.2 https://launchpad.net/ubuntu/+archive/primary/+files/kamoso_2.0.2.orig.tar.bz2

When you run this command, all patches will be unapplied, because they can become out of date. They might need to
be refreshed to match the new upstream source or they might need to be removed altogether. To check for problems,
apply the patches one at a time:

$ quilt push
Applying patch kubuntu_01_fix_qmax_on_armel.diff
patching file src/kamoso.cpp
Hunk #1 FAILED at 398.
1 out of 1 hunk FAILED -- rejects in file src/kamoso.cpp
Patch kubuntu_01_fix_qmax_on_armel.diff can be reverse-applied

If it can be reverse-applied this means the patch has been applied already by upstream, so we can delete the patch:

$ quilt delete kubuntu_01_fix_qmax_on_armel
Removed patch kubuntu_01_fix_qmax_on_armel.diff

Then carry on:

$ quilt push
Applied kubuntu_02_program_description.diff

It is a good idea to run refresh, this will update the patch relative to the changed upstream source:

$ quilt refresh
Refreshed patch kubuntu_02_program_description.diff

Then commit as usual:

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 25

http://dep.debian.net/deps/dep3/
mailto:packager@example.com

1.9. Fixing FTBFS packages Ubuntu Packaging Guide

$ bzr commit -m "new upstream version"

1.8.5 Making A Package Use Quilt

Modern packages use Quilt by default, it is built into the packaging format. Check in debian/source/format
to ensure it says 3.0 (quilt).

Older packages using source format 1.0 will need to explicitly use Quilt, usually by including a makefile into
debian/rules.

1.8.6 Configuring Quilt

You can use ~/.quiltrc file to configure quilt. Here are some options that can be useful for using quilt with
debian/packages:

Set the patches directory
QUILT_PATCHES="debian/patches"
Remove all useless formatting from the patches
QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
The same for quilt diff command, and use colored output
QUILT_DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"

1.8.7 Other Patch Systems

Other patch systems used by packages include dpatch and cdbs simple-patchsys, these work similarly
to Quilt by keeping patches in debian/patches but have different commands to apply, un-apply or create
patches. You can find out which patch system is used by a package by using the what-patch command (from
the ubuntu-dev-tools package). You can use edit-patch, shown in previous chapters, as a reliable way to
work with all systems.

In even older packages changes will be included directly to sources and kept in the diff.gz source file. This makes
it hard to upgrade to new upstream versions or differentiate between patches and is best avoided.

Do not change a package’s patch system without discussing it with the Debian maintainer or relevant Ubuntu team. If
there is no existing patch system then feel free to add Quilt.

1.9 Fixing FTBFS packages

Before a package can be used in Ubuntu, it has to build from source. If it fails this, it will probably wait in -proposed
and will not be available in the Ubuntu archives. You can find a complete list of packages that are failing to build from
source at http://qa.ubuntuwire.org/ftbfs/. There are 5 main categories shown on the page:

• Package failed to build (F): Something actually went wrong with the build process.

• Cancelled build (X): The build has been cancelled for some reason. These should probably be avoided to start
with.

• Package is waiting on another package (M): This package is waiting on another package to either build, get
updated, or (if the package is in main) one of it’s dependancies is in the wrong part of the archive.

• Failure in the chroot (C): Part of the chroot failed, this is most likely fixed by a rebuild. Ask a developer to
rebuild the package and that should fix it.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 26

http://qa.ubuntuwire.org/ftbfs/

1.10. Shared Libraries Ubuntu Packaging Guide

• Failed to upload (U): The package could not upload. This is usually just a case of asking for a rebuild, but check
the build log first.

1.9.1 First steps

The first thing you’ll want to do is see if you can reproduce the FTBFS yourself. Get the code either by running bzr
branch lp:ubuntu/PACKAGE and then getting the tarball or running dget PACKAGE_DSC on the .dsc file
from the launchpad page. Once you have that, build it in a schroot.

You should be able to reproduce the FTBFS. If not, check if the build is downloading a missing dependency, which
means you just need to make that a build-dependency in debian/control. Building the package locally can also help
find if the issue is caused by a missing, unlisted, dependency (builds locally but fails on a schroot).

1.9.2 Checking Debian

Once you have reproduced the issue, it’s time to try and find a solution. If the package is in Debian as well, you
can check if the package builds there by going to http://packages.qa.debian.org/PACKAGE. If Debian has a newer
version, you should merge it. If not, check the buildlogs and bugs linked on that page for any extra information on
the ftbfs or patches. Debian also maintains a list of command FTBFSs and how to fix them which can be found at
https://wiki.debian.org/qa.debian.org/FTBFS, you will want to check it for solutions too.

1.9.3 ARM64

Ubuntu has added arm64 as a architecture recently, but many packages fail to build on it. A full list of the packages not
building are at qa.ubuntuwire.org/ftbfs/arm64.html. Many of these are caused by packages using outdated autotools
helper files. Any package with the lintian warning ancient-autotools-helper-file or outdated-autotools-helper-file will
have this issue. Adding autotools-dev or dh-autoreconf to the build proccess will usually fix this.

1.9.4 Other causes of a package to FTBFS

If a package is in main and missing a dependency that is not in main, you will have to file a MIR bug.
https://wiki.ubuntu.com/MainInclusionProcess explains the procedure.

1.9.5 Fixing the issue

Once you have found a fix to the problem, follow the same process as any other bug. Make a patch, add it to a bzr
branch or bug, subscribe ubuntu-sponsors, then try to get it included upstream and/or in Debian.

1.10 Shared Libraries

Shared libraries are compiled code which is intended to be shared among several different programs. They are dis-
tributed as .so files in /usr/lib/.

A library exports symbols which are the compiled versions of functions, classes and variables. A library has a name
called an SONAME which includes a version number. This SONAME version does not necessarily match the public
release version number. A program gets compiled against a given SONAME version of the library. If any of the
symbols is removed or changes then the version number needs to be changed which forces any packages using that
library to be recompiled against the new version. Version numbers are usually set by upstream and we follow them in

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 27

http://packages.qa.debian.org/PACKAGE
https://wiki.debian.org/qa.debian.org/FTBFS
https://wiki.ubuntu.com/MainInclusionProcess

1.10. Shared Libraries Ubuntu Packaging Guide

our binary package names called an ABI number, but sometimes upstreams do not use sensible version numbers and
packagers have to keep separate version numbers.

Libraries are usually distributed by upstream as standalone releases. Sometimes they are distributed as part of a
program. In this case they can be included in the binary package along with the program (this is called bundling)
if you do not expect any other programs to use the library, more often they should be split out into separate binary
packages.

The libraries themselves are put into a binary package named libfoo1 where foo is the name of the library and 1 is
the version from the SONAME. Development files from the package, such as header files, needed to compile programs
against the library are put into a package called libfoo-dev.

1.10.1 An Example

We will use libnova as an example:

$ bzr branch ubuntu:trusty/libnova
$ sudo apt-get install libnova-dev

To find the SONAME of the library run:

$ readelf -a /usr/lib/libnova-0.12.so.2 | grep SONAME

The SONAME is libnova-0.12.so.2, which matches the file name (usually the case but not always). Here
upstream has put the upstream version number as part of the SONAME and given it an ABI version of 2. Li-
brary package names should follow the SONAME of the library they contain. The library binary package is called
libnova-0.12-2 where libnova-0.12 is the name of the library and 2 is our ABI number.

If upstream makes incompatible changes to their library they will have to reversion their SONAME and we will have
to rename our library. Any other packages using our library package will need to recompiled against the new version,
this is called a transition and can take some effort. Hopefully our ABI number will continue to match upstream’s
SONAME but sometimes they introduce incompatibilities without changing their version number and we will need to
change ours.

Looking in debian/libnova-0.12-2.install we see it includes two files:

usr/lib/libnova-0.12.so.2
usr/lib/libnova-0.12.so.2.0.0

The last one is the actual library, complete with minor and point version number. The first one is a symlink which
points to the actual library. The symlink is what programs using the library will look for, the running programs do not
care about the minor version number.

libnova-dev.install includes all the files needed to compile a program with this library. Header files, a config
binary, the .la libtool file and libnova.so which is another symlink pointing at the library, programs compiling
against the library do not care about the major version number (although the binary they compile into will).

.la libtool files are needed on some non-Linux systems with poor library support but usually cause more problems
than they solve on Debian systems. It is a current Debian goal to remove .la files and we should help with this.

1.10.2 Static Libraries

The -dev package also ships usr/lib/libnova.a. This is a static library, an alternative to the shared library. Any
program compiled against the static library will include the code directory into itself. This gets round worrying about
binary compatibility of the library. However it also means that any bugs, including security issues, will not be updated
along with the library until the program is recompiled. For this reason programs using static libraries are discouraged.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 28

https://wiki.debian.org/ReleaseGoals/LAFileRemoval

1.11. Backporting software updates Ubuntu Packaging Guide

1.10.3 Symbol Files

When a package builds against a library the shlibs mechanism will add a package dependency on that library. This
is why most programs will have Depends: ${shlibs:Depends} in debian/control. That gets replaced
with the library dependencies at build time. However shlibs can only make it depend on the major ABI version number,
2 in our libnova example, so if new symbols get added in libnova 2.1 a program using these symbols could still be
installed against libnova ABI 2.0 which would then crash.

To make the library dependencies more precise we keep .symbols files that list all the symbols in a library and the
version they appeared in.

libnova has no symbols file so we can create one. Start by compiling the package:

$ bzr builddeb -- -nc

The -nc will cause it to finish at the end of compilation without removing the built files. Change to the build and run
dpkg-gensymbols for the library package:

$ cd ../build-area/libnova-0.12.2/
$ dpkg-gensymbols -plibnova-0.12-2 > symbols.diff

This makes a diff file which you can self apply:

$ patch -p0 < symbols.diff

Which will create a file named similar to dpkg-gensymbolsnY_WWI that lists all the symbols. It also lists the
current package version. We can remove the packaging version from that listed in the symbols file because new
symbols are not generally added by new packaging versions, but by the upstream developers:

$ sed -i s,-0ubuntu2,, dpkg-gensymbolsnY_WWI

Now move the file into its location, commit and do a test build:

$ mv dpkg-gensymbolsnY_WWI ../../libnova/debian/libnova-0.12-2.symbols
$ cd ../../libnova
$ bzr add debian/libnova-0.12-2.symbols
$ bzr commit -m "add symbols file"
$ bzr builddeb

If it successfully compiles the symbols file is correct. With the next upstream version of libnova you would run
dpkg-gensymbols again and it will give a diff to update the symbols file.

1.10.4 C++ Library Symbols Files

C++ has even more exacting standards of binary compatibility than C. The Debian Qt/KDE Team maintain some
scripts to handle this, see their Working with symbols files page for how to use them.

1.10.5 Further Reading

Junichi Uekawa’s Debian Library Packaging Guide goes into this topic in more detail.

1.11 Backporting software updates

Sometimes you might want to make new functionality available in a stable release which is not connected to a critical
bug fix. For these scenarios you have two options: either you upload to a PPA or prepare a backport.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 29

http://pkg-kde.alioth.debian.org/symbolfiles.html
http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
https://help.launchpad.net/Packaging/PPA

1.11. Backporting software updates Ubuntu Packaging Guide

1.11.1 Personal Package Archive (PPA)

Using a PPA has a number of benefits. It is fairly straight-forward, you don’t need approval of anyone, but the downside
of it is that your users will have to manually enable it. It is a non-standard software source.

The PPA documentation on Launchpad is fairly comprehensive and should get you up and running in no time.

1.11.2 Official Ubuntu Backports

The Backports Project is a means to provide new features to users. Because of the inherent stability risks in backporting
packages, users do not get backported packages without some explicit action on their part. This generally makes
backports an inappropriate avenue for fixing bugs. If a package in an Ubuntu release has a bug, it should be fixed
either through the Security Update or the Stable Release Update process, as appropriate.

Once you determined you want a package to be backported to a stable release, you will need to test-build and test it on
the given stable release. pbuilder-dist (in the ubuntu-dev-tools package) is a very handy tool to do this
easily.

To report the backport request and get it processed by the Backporters team, you can use the requestbackport
tool (also in the ubuntu-dev-tools package). It will determine the intermediate releases that package needs to
be backported to, list all reverse-dependencies, and file the backporting request. Also will it include a testing checklist
in the bug.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 30

https://help.launchpad.net/Packaging/PPA

CHAPTER 2

Knowledge Base

2.1 Communication in Ubuntu Development

In a project where thousands of lines of code are changed, lots of decisions are made and hundreds of people interact
every day, it is important to communicate effectively.

2.1.1 Mailing lists

Mailing lists are a very important tool if you want to communicate ideas to a broader team and make sure that you
reach everybody, even across timezones.

In terms of development, these are the most important ones:

• https://lists.ubuntu.com/mailman/listinfo/ubuntu-devel-announce (announce-only, the most important develop-
ment announcements go here)

• https://lists.ubuntu.com/mailman/listinfo/ubuntu-devel (general Ubuntu development discussion)

• https://lists.ubuntu.com/mailman/listinfo/ubuntu-motu (MOTU Team discussion, get help with packaging)

2.1.2 IRC Channels

For real-time discussions, please connect to irc.freenode.net and join one or any of these channels:

• #ubuntu-devel (for general development discussion)

• #ubuntu-motu (for MOTU team discussion and generally getting help)

2.2 Basic Overview of the debian/ Directory

This article will briefly explain the different files important to the packaging of Ubuntu packages which are contained
in the debian/ directory. The most important of them are changelog, control, copyright, and rules.
These are required for all packages. A number of additional files in the debian/ may be used in order to customize
and configure the behavior of the package. Some of these files are discussed in this article, but this is not meant to be
a complete list.

31

https://lists.ubuntu.com/mailman/listinfo/ubuntu-devel-announce
https://lists.ubuntu.com/mailman/listinfo/ubuntu-devel
https://lists.ubuntu.com/mailman/listinfo/ubuntu-motu

2.2. Basic Overview of the debian/ Directory Ubuntu Packaging Guide

2.2.1 The changelog

This file is, as its name implies, a listing of the changes made in each version. It has a specific format that gives the
package name, version, distribution, changes, and who made the changes at a given time. If you have a GPG key (see:
Getting set up), make sure to use the same name and email address in changelog as you have in your key. The
following is a template changelog:

package (version) distribution; urgency=urgency

* change details
- more change details

* even more change details

-- maintainer name <email address>[two spaces] date

The format (especially of the date) is important. The date should be in RFC 5322 format, which can be obtained by
using the command date -R. For convenience, the command dch may be used to edit changelog. It will update the
date automatically.

Minor bullet points are indicated by a dash “-”, while major points use an asterisk “*”.

If you are packaging from scratch, dch --create (dch is in the devscripts package) will create a standard
debian/changelog for you.

Here is a sample changelog file for hello:

hello (2.8-0ubuntu1) trusty; urgency=low

* New upstream release with lots of bug fixes and feature improvements.

-- Jane Doe <packager@example.com> Thu, 21 Oct 2013 11:12:00 -0400

Notice that the version has a -0ubuntu1 appended to it, this is the distro revision, used so that the packaging can be
updated (to fix bugs for example) with new uploads within the same source release version.

Ubuntu and Debian have slightly different package versioning schemes to avoid conflicting packages with the same
source version. If a Debian package has been changed in Ubuntu, it has ubuntuX (where X is the Ubuntu revision
number) appended to the end of the Debian version. So if the Debian hello 2.6-1 package was changed by Ubuntu,
the version string would be 2.6-1ubuntu1. If a package for the application does not exist in Debian, then the
Debian revision is 0 (e.g. 2.6-0ubuntu1).

For further information, see the changelog section (Section 4.4) of the Debian Policy Manual.

2.2.2 The control file

The control file contains the information that the package manager (such as apt-get, synaptic, and adept)
uses, build-time dependencies, maintainer information, and much more.

For the Ubuntu hello package, the control file looks something like this:

Source: hello
Section: devel
Priority: optional
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
XSBC-Original-Maintainer: Jane Doe <packager@example.com>
Standards-Version: 3.9.5
Build-Depends: debhelper (>= 7)
Vcs-Bzr: lp:ubuntu/hello
Homepage: http://www.gnu.org/software/hello/

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 32

https://tools.ietf.org/html/rfc5322.html
http://www.debian.org/doc/debian-policy/ch-source.html#s-dpkgchangelog

2.2. Basic Overview of the debian/ Directory Ubuntu Packaging Guide

Package: hello
Architecture: any
Depends: ${shlibs:Depends}
Description: The classic greeting, and a good example
The GNU hello program produces a familiar, friendly greeting. It
allows non-programmers to use a classic computer science tool which
would otherwise be unavailable to them. Seriously, though: this is
an example of how to do a Debian package. It is the Debian version of
the GNU Project's `hello world' program (which is itself an example
for the GNU Project).

The first paragraph describes the source package including the list of packages required to build the package from
source in the Build-Depends field. It also contains some meta-information such as the maintainer’s name, the
version of Debian Policy that the package complies with, the location of the packaging version control repository, and
the upstream home page.

Note that in Ubuntu, we set the Maintainer field to a general address because anyone can change
any package (this differs from Debian where changing packages is usually restricted to an individual or a
team). Packages in Ubuntu should generally have the Maintainer field set to Ubuntu Developers
<ubuntu-devel-discuss@lists.ubuntu.com>. If the Maintainer field is modified, the old value
should be saved in the XSBC-Original-Maintainer field. This can be done automatically with the
update-maintainer script available in the ubuntu-dev-tools package. For further information, see the
Debian Maintainer Field spec on the Ubuntu wiki.

Each additional paragraph describes a binary package to be built.

For further information, see the control file section (Chapter 5) of the Debian Policy Manual.

2.2.3 The copyright file

This file gives the copyright information for both the upstream source and the packaging. Ubuntu and Debian Pol-
icy (Section 12.5) require that each package installs a verbatim copy of its copyright and license information to
/usr/share/doc/$(package_name)/copyright.

Generally, copyright information is found in the COPYING file in the program’s source directory. This file should
include such information as the names of the author and the packager, the URL from which the source came, a
Copyright line with the year and copyright holder, and the text of the copyright itself. An example template would be:

Format: http://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: Hello
Source: ftp://ftp.example.com/pub/games

Files: *
Copyright: Copyright 1998 John Doe <jdoe@example.com>
License: GPL-2+

Files: debian/*
Copyright: Copyright 1998 Jane Doe <packager@example.com>
License: GPL-2+

License: GPL-2+
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later
version.
.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 33

https://wiki.ubuntu.com/DebianMaintainerField
http://www.debian.org/doc/debian-policy/ch-controlfields.html
http://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile
http://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile

2.2. Basic Overview of the debian/ Directory Ubuntu Packaging Guide

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more
details.
.
You should have received a copy of the GNU General Public
License along with this package; if not, write to the Free
Software Foundation, Inc., 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA
.
On Debian systems, the full text of the GNU General Public
License version 2 can be found in the file
`/usr/share/common-licenses/GPL-2'.

This example follows the Machine-readable debian/copyright format. You are encouraged to use this format as well.

2.2.4 The rules file

The last file we need to look at is rules. This does all the work for creating our package. It is a Makefile with targets
to compile and install the application, then create the .deb file from the installed files. It also has a target to clean up
all the build files so you end up with just a source package again.

Here is a simplified version of the rules file created by dh_make (which can be found in the dh-make package):

#!/usr/bin/make -f
-*- makefile -*-

Uncomment this to turn on verbose mode.
#export DH_VERBOSE=1

%:
dh $@

Let us go through this file in some detail. What this does is pass every build target that debian/rules is called
with as an argument to /usr/bin/dh, which itself will call all the necessary dh_* commands.

dh runs a sequence of debhelper commands. The supported sequences correspond to the targets of a debian/rules
file: “build”, “clean”, “install”, “binary-arch”, “binary-indep”, and “binary”. In order to see what commands are run
in each target, run:

$ dh binary-arch --no-act

Commands in the binary-indep sequence are passed the “-i” option to ensure they only work on binary independent
packages, and commands in the binary-arch sequences are passed the “-a” option to ensure they only work on archi-
tecture dependent packages.

Each debhelper command will record when it’s successfully run in debian/package.debhelper.log. (Which
dh_clean deletes.) So dh can tell which commands have already been run, for which packages, and skip running those
commands again.

Each time dh is run, it examines the log, and finds the last logged command that is in the specified sequence. It
then continues with the next command in the sequence. The --until, --before, --after, and --remaining
options can override this behavior.

If debian/rules contains a target with a name like override_dh_command, then when it gets to that command
in the sequence, dh will run that target from the rules file, rather than running the actual command. The override target

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 34

http://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

2.2. Basic Overview of the debian/ Directory Ubuntu Packaging Guide

can then run the command with additional options, or run entirely different commands instead. (Note that to use this
feature, you should Build-Depend on debhelper 7.0.50 or above.)

Have a look at /usr/share/doc/debhelper/examples/ and man dh for more examples. Also see the rules
section (Section 4.9) of the Debian Policy Manual.

2.2.5 Additional Files

The install file

The install file is used by dh_install to install files into the binary package. It has two standard use cases:

• To install files into your package that are not handled by the upstream build system.

• Splitting a single large source package into multiple binary packages.

In the first case, the install file should have one line per file installed, specifying both the file and the installation
directory. For example, the following install file would install the script foo in the source package’s root directory
to usr/bin and a desktop file in the debian directory to usr/share/applications:

foo usr/bin
debian/bar.desktop usr/share/applications

When a source package is producing multiple binary packages dh will install the files into debian/tmp rather
than directly into debian/<package>. Files installed into debian/tmp can then be moved into separate binary
packages using multiple $package_name.install files. This is often done to split large amounts of architecture
independent data out of architecture dependent packages and into Architecture: all packages. In this case,
only the name of the files (or directories) to be installed are needed without the installation directory. For example,
foo.install containing only the architecture dependent files might look like:

usr/bin/
usr/lib/foo/*.so

While foo-common.install containing only the architecture independent file might look like:

/usr/share/doc/
/usr/share/icons/
/usr/share/foo/
/usr/share/locale/

This would create two binary packages, foo and foo-common. Both would require their own paragraph in
debian/control.

See man dh_install and the install file section (Section 5.11) of the Debian New Maintainers’ Guide for addi-
tional details.

The watch file

The debian/watch file allows us to check automatically for new upstream versions using the tool uscan found in
the devscripts package. The first line of the watch file must be the format version (3, at the time of this writing),
while the following lines contain any URLs to parse. For example:

version=3

http://ftp.gnu.org/gnu/hello/hello-(.*).tar.gz

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 35

http://www.debian.org/doc/debian-policy/ch-source.html#s-debianrules
http://www.debian.org/doc/debian-policy/ch-source.html#s-debianrules
http://www.debian.org/doc/manuals/maint-guide/dother.en.html#install

2.2. Basic Overview of the debian/ Directory Ubuntu Packaging Guide

Running uscan in the root source directory will now compare the upstream version number in
debian/changelog with the latest available upstream version. If a new upstream version is found, it will be
automatically downloaded. For example:

$ uscan
hello: Newer version (2.7) available on remote site:

http://ftp.gnu.org/gnu/hello/hello-2.7.tar.gz
(local version is 2.6)

hello: Successfully downloaded updated package hello-2.7.tar.gz
and symlinked hello_2.7.orig.tar.gz to it

If your tarballs live on Launchpad, the debian/watch file is a little more complicated (see Question 21146 and Bug
231797 for why this is). In that case, use something like:

version=3
https://launchpad.net/flufl.enum/+download http://launchpad.net/flufl.enum/.*/flufl.enum-(.+).tar.gz

For further information, see man uscan and the watch file section (Section 4.11) of the Debian Policy Manual.

For a list of packages where the watch file reports they are not in sync with upstream see Ubuntu External Health
Status.

The source/format file

This file indicates the format of the source package. It should contain a single line indicating the desired format:

• 3.0 (native) for Debian native packages (no upstream version)

• 3.0 (quilt) for packages with a separate upstream tarball

• 1.0 for packages wishing to explicitly declare the default format

Currently, the package source format will default to 1.0 if this file does not exist. You can make this explicit in the
source/format file. If you choose not to use this file to define the source format, Lintian will warn about the missing
file. This warning is informational only and may be safely ignored.

You are encouraged to use the newer 3.0 source format. It provides a number of new features:

• Support for additional compression formats: bzip2, lzma and xz

• Support for multiple upstream tarballs

• Not necessary to repack the upstream tarball to strip the debian directory

• Debian-specific changes are no longer stored in a single .diff.gz but in multiple patches compatible with quilt
under debian/patches/

https://wiki.debian.org/Projects/DebSrc3.0 summarizes additional information concerning the switch to the 3.0 source
package formats.

See man dpkg-source and the source/format section (Section 5.21) of the Debian New Maintainers’ Guide for
additional details.

2.2.6 Additional Resources

In addition to the links to the Debian Policy Manual in each section above, the Debian New Maintainers’ Guide has
more detailed descriptions of each file. Chapter 4, “Required files under the debian directory” further discusses the
control, changelog, copyright and rules files. Chapter 5, “Other files under the debian directory” discusses additional
files that may be used.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 36

https://answers.launchpad.net/launchpad/+question/21146
https://launchpad.net/launchpad/+bug/231797
https://launchpad.net/launchpad/+bug/231797
http://www.debian.org/doc/debian-policy/ch-source.html#s-debianwatch
http://qa.ubuntuwire.org/uehs/no_updated.html
http://qa.ubuntuwire.org/uehs/no_updated.html
https://wiki.debian.org/Projects/DebSrc3.0
http://www.debian.org/doc/manuals/maint-guide/dother.en.html#sourcef
http://www.debian.org/doc/manuals/maint-guide/dreq.en.html
http://www.debian.org/doc/manuals/maint-guide/dother.en.html

2.3. autopkgtest: Automatic testing for packages Ubuntu Packaging Guide

2.3 autopkgtest: Automatic testing for packages

The DEP 8 specification defines how automatic testing can very easily be integrated into packages. To integrate a test
into a package, all you need to do is:

• add the following to the Source section in debian/control:

XS-Testsuite: autopkgtest

• add a file called debian/tests/control which specifies the requirements for the testbed,

• add the tests in debian/tests/.

2.3.1 Testbed requirements

In debian/tests/control you specify what to expect from the testbed. So for example you list all the required
packages for the tests, if the testbed gets broken during the build or if root permissions are required. The DEP 8
specification lists all available options.

Below we are having a look at the glib2.0 source package. In a very simple case the file would look like this:

Tests: build
Depends: libglib2.0-dev, build-essential

For the test in debian/tests/build this would ensure that the packages libglib2.0-dev and
build-essential are installed.

Note: You can use @ in the Depends line to indicate that you want all the packages installed which are built by the
source package in question.

2.3.2 The actual tests

The accompanying test for the example above might be:

#!/bin/sh
autopkgtest check: Build and run a program against glib, to verify that the
headers and pkg-config file are installed correctly
(C) 2012 Canonical Ltd.
Author: Martin Pitt <martin.pitt@ubuntu.com>

set -e

WORKDIR=$(mktemp -d)
trap "rm -rf $WORKDIR" 0 INT QUIT ABRT PIPE TERM
cd $WORKDIR
cat <<EOF > glibtest.c
#include <glib.h>

int main()
{

g_assert_cmpint (g_strcmp0 (NULL, "hello"), ==, -1);
g_assert_cmpstr (g_find_program_in_path ("bash"), ==, "/bin/bash");
return 0;

}
EOF

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 37

http://anonscm.debian.org/cgit/autopkgtest/autopkgtest.git/tree/doc/README.package-tests.rst
http://anonscm.debian.org/cgit/autopkgtest/autopkgtest.git/tree/doc/README.package-tests.rst
http://anonscm.debian.org/cgit/autopkgtest/autopkgtest.git/tree/doc/README.package-tests.rst

2.3. autopkgtest: Automatic testing for packages Ubuntu Packaging Guide

gcc -o glibtest glibtest.c `pkg-config --cflags --libs glib-2.0`
echo "build: OK"
[-x glibtest]
./glibtest
echo "run: OK"

Here a very simple piece of C code is written to a temporary directory. Then this is compiled with system libraries
(using flags and library paths as provided by pkg-config). Then the compiled binary, which just exercises some parts
of core glib functionality, is run.

While this test is very small and simple, it covers quite a lot: that your -dev package has all necessary dependencies,
that your package installs working pkg-config files, headers and libraries are put into the right place, or that the
compiler and linker work. This helps to uncover critical issues early on.

2.3.3 Executing the test

While the test script can be easily executed on its own, it is strongly recommended to actually use adt-run from
the autopkgtest package for verifying that your test works; otherwise, if it fails in the Ubuntu Continuous Inte-
gration (CI) system, it will not land in Ubuntu. This also avoids cluttering your workstation with test packages or test
configuration if the test does something more intrusive than the simple example above.

The README.running-tests (online version) documentation explains all available testbeds (schroot, LXC, QEMU,
etc.) and the most common scenarios how to run your tests with adt-run, e. g. with locally built binaries, locally
modified tests, etc.

The Ubuntu CI system uses the QEMU runner and runs the tests from the packages in the archive, with -proposed
enabled. To reproduce the exact same environment, first install the necessary packages:

sudo apt-get install autopkgtest qemu-system qemu-utils

Now build a testbed with:

adt-buildvm-ubuntu-cloud -v

(Please see its manpage and --help output for selecting different releases, architectures, output directory, or using
proxies). This will build e. g. adt-trusty-amd64-cloud.img.

Then run the tests of a source package like libpng in that QEMU image:

adt-run libpng --- qemu adt-trusty-amd64-cloud.img

The Ubuntu CI system runs packages with -proposed enabled; to enable that, run:

adt-run libpng -U --apt-pocket=proposed --- qemu adt-trusty-amd64-cloud.img

The adt-run manpage has a lot more valuable information on other testing options.

2.3.4 Further examples

This list is not comprehensive, but might help you get a better idea of how automated tests are implemented and used
in Ubuntu.

• The libxml2 tests are very similar. They also run a test-build of a simple piece of C code and execute it.

• The gtk+3.0 tests also do a compile/link/run check in the “build” test. There is an additional “python3-gi” test
which verifies that the GTK library can also be used through introspection.

• In the ubiquity tests the upstream test-suite is executed.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 38

http://anonscm.debian.org/cgit/autopkgtest/autopkgtest.git/tree/doc/README.package-tests.rst
https://bazaar.launchpad.net/+branch/ubuntu/libxml2/files/head:/debian/tests/
https://bazaar.launchpad.net/+branch/ubuntu/gtk+3.0/files/head:/debian/tests/
https://bazaar.launchpad.net/+branch/ubiquity/files/head:/debian/tests/

2.4. Getting the Source Ubuntu Packaging Guide

• The gvfs tests have comprehensive testing of their functionality and are very interesting because they emulate
usage of CDs, Samba, DAV and other bits.

2.3.5 Ubuntu infrastructure

Packages which have autopkgtest enabled will have their tests run whenever they get uploaded or any of their
dependencies change. The output of automatically run autopkgtest tests can be viewed on the web and is regularly
updated.

Debian also uses adt-run to run package tests, although currently only in schroots, so results may vary a bit. Results
and logs can be seen on http://ci.debian.net. So please submit any test fixes or new tests to Debian as well.

2.3.6 Getting the test into Ubuntu

The process of submitting an autopkgtest for a package is largely similar to fixing a bug in Ubuntu. Essentially you
simply:

• run bzr branch ubuntu:<packagename>,

• edit debian/control to enable the tests,

• add the debian/tests directory,

• write the debian/tests/control based on the DEP 8 Specification,

• add your test case(s) to debian/tests,

• commit your changes, push them to Launchpad, propose a merge and get it reviewed just like any other im-
provement in a source package.

2.3.7 What you can do

The Ubuntu Engineering team put together a list of required test-cases, where packages which need tests are put into
different categories. Here you can find examples of these tests and easily assign them to yourself.

If you should run into any problems, you can join the #ubuntu-quality IRC channel to get in touch with developers
who can help you.

2.4 Getting the Source

2.4.1 Source package URLs

Bazaar provides some very nice shortcuts for accessing Launchpad’s source branches of packages in both Ubuntu and
Debian.

To refer to source branches use:

ubuntu:package

where package refers to the package name you’re interested in. This URL refers to the package in the current devel-
opment version of Ubuntu. To refer to the branch of Tomboy in the development version, you would use:

ubuntu:tomboy

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 39

https://bazaar.launchpad.net/+branch/ubuntu/gvfs/files/head:/debian/tests/
https://jenkins.qa.ubuntu.com/view/Utopic/view/AutoPkgTest/
http://ci.debian.net
http://anonscm.debian.org/cgit/autopkgtest/autopkgtest.git/tree/doc/README.package-tests.rst
https://wiki.ubuntu.com/QATeam/RequiredTests
http://webchat.freenode.net/?channels=ubuntu-quality

2.4. Getting the Source Ubuntu Packaging Guide

To refer to the version of a source package in an older release of Ubuntu, just prefix the package name with the release’s
code name. E.g. to refer to Tomboy’s source package in Saucy use:

ubuntu:saucy/tomboy

Since they are unique, you can also abbreviate the distro-series name:

ubuntu:s/tomboy

You can use a similar scheme to access the source branches in Debian, although there are no shortcuts for the Debian
distro-series names. To access the Tomboy branch in the current development series for Debian use:

debianlp:tomboy

and to access Tomboy in Debian Wheezy use:

debianlp:wheezy/tomboy

2.4.2 Getting the source

Every source package in Ubuntu has an associated source branch on Launchpad. These source branches are updated
automatically by Launchpad, although the process is not currently foolproof.

There are a couple of things that we do first in order to make the workflow more efficient later. Once you are used to
the process you will learn when it makes sense to skip these steps.

Creating a shared repository

Say that you want to work on the Tomboy package, and you’ve verified that the source package is named tomboy.
Before actually branching the code for Tomboy, create a shared repository to hold the branches for this package. The
shared repository will make future work much more efficient.

Do this using the bzr init-repo command, passing it the directory name we would like to use:

$ bzr init-repo tomboy

You will see that a tomboy directory is created in your current working area. Change to this new directory for the rest
of your work:

$ cd tomboy

Getting the trunk branch

We use the bzr branch command to create a local branch of the package. We’ll name the target directory tomboy.dev
just to keep things easy to remember:

$ bzr branch ubuntu:tomboy tomboy.dev

The tomboy.dev directory represents the version of Tomboy in the development version of Ubuntu, and you can always
cd into this directory and do a bzr pull to get any future updates.

Ensuring the version is up to date

When you do your bzr branch you will get a message telling you if the packaging branch is up to date. For
example:

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 40

https://wiki.ubuntu.com/SaucySalamander
http://www.debian.org/releases/stable/

2.5. Working on a Package Ubuntu Packaging Guide

$ bzr branch ubuntu:tomboy
Most recent Ubuntu version: 1.8.0-1ubuntu1.2
Packaging branch status: CURRENT
Branched 86 revisions.

Occasionally the importer fails and packaging branches do not match what is in the archive. A message saying:

Packaging branch status: OUT-OF-DATE

means the importer has failed. You can find out why on http://package-import.ubuntu.com/status/ and file a bug on the
UDD project to get the issue resolved.

Upstream Tar

You can get the upstream tar by running:

bzr get-orig-source

This will try a number of methods to get the upstream tar, firstly by recreating it from the upstream-x.y
tag in the bzr archive, then by downloading from the Ubuntu archive, lastly by running debian/rules
get-orig-source. The upstream tar will also be recreated when using bzr to build the package:

bzr builddeb

The builddeb plugin has several configuration options.

Getting a branch for a particular release

When you want to do something like a stable release update (SRU), or you just want to examine the code in an old
release, you’ll want to grab the branch corresponding to a particular Ubuntu release. For example, to get the Tomboy
package for Quantal do:

$ bzr branch ubuntu:m/tomboy quantal

Importing a Debian source package

If the package you want to work on is available in Debian but not Ubuntu, it’s still easy to import the code to a local
bzr branch for development. Let’s say you want to import the newpackage source package. We’ll start by creating a
shared repository as normal, but we also have to create a working tree to which the source package will be imported
(remember to cd out of the tomboy directory created above):

$ bzr init-repo newpackage
$ cd newpackage
$ bzr init debian
$ cd debian
$ bzr import-dsc http://ftp.de.debian.org/debian/pool/main/n/newpackage/newpackage_1.0-1.dsc

As you can see, we just need to provide the remote location of the dsc file, and Bazaar will do the rest. You’ve now
got a Bazaar source branch.

2.5 Working on a Package

Once you have the source package branch in a shared repository, you’ll want to create additional branches for the fixes
or other work you plan to do. You’ll want to base your branch off the package source branch for the distro release

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 41

http://package-import.ubuntu.com/status/
https://bugs.launchpad.net/udd
https://bugs.launchpad.net/udd
http://bazaar.launchpad.net/~bzr-builddeb-hackers/bzr-builddeb/trunk/view/head:/doc/user_manual/configuration.rst
https://wiki.ubuntu.com/StableReleaseUpdates

2.5. Working on a Package Ubuntu Packaging Guide

that you plan to upload to. Usually this is the current development release, but it may be older releases if you’re
backporting to an SRU for example.

2.5.1 Branching for a change

The first thing to do is to make sure your source package branch is up-to-date. It will be if you just checked it out,
otherwise do this:

$ cd tomboy.dev
$ bzr pull

Any updates to the package that have uploaded since your checkout will now be pulled in. You do not want to make
changes to this branch. Instead, create a branch that will contain just the changes you’re going to make. Let’s say
you want to fix bug 12345 for the Tomboy project. When you’re in the shared repository you previously created for
Tomboy, you can create your bug fix branch like this:

$ bzr branch tomboy.dev bug-12345
$ cd bug-12345

Now you can do all my work in the bug-12345 directory. You make changes there as necessary, committing as
you go along. This is just like doing any kind of software development with Bazaar. You can make intermediate
commits as often as you like, and when your changes are finished, you will use the standard dch command (from the
devscripts package):

$ dch -i

This will drop you in an editor to add an entry to the debian/changelog file. When you added your
debian/changelog entry, you should have included a bug fix tag that indicated which Launchpad bug issue
you’re fixing. The format of this textual tag is pretty strict: LP: #12345. The space between the : and the # is
required and of course you should use the actual bug number that you’re fixing. Your debian/changelog entry
might look something like:

tomboy (1.12.0-1ubuntu3) trusty; urgency=low

* Don't fubar the frobnicator. (LP: #12345)

-- Bob Dobbs <subgenius@example.com> Mon, 10 Sep 2013 16:10:01 -0500

Commit with the normal:

bzr commit

A hook in bzr-builddeb will use the debian/changelog text as the commit message and set the tag to mark bug #12345
as fixed.

This only works with bzr-builddeb 2.7.5 and bzr 2.4, for older versions use debcommit.

2.5.2 Building the package

Along the way, you’ll want to build your branch so that you can test it to make sure it does actually fix the bug.

In order to build the package you can use the bzr builddeb command from the bzr-builddeb package. You
can build a source package with:

$ bzr builddeb -S

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 42

2.6. Seeking Review and Sponsorship Ubuntu Packaging Guide

(bd is an alias for builddeb.) You can leave the package unsigned by appending -- -uc -us to the command.

It is also possible to use your normal tools, as long as they are able to strip the .bzr directories from the package, e.g.:

$ debuild -i -I

If you ever see an error related to trying to build a native package without a tarball, check to see if there is a
.bzr-builddeb/default.conf file erroneously specifying the package as native. If the changelog version
has a dash in it, then it’s not a native package, so remove the configuration file. Note that while bzr builddeb has
a --native switch, it does not have a --no-native switch.

Once you’ve got the source package, you can build it as normal with pbuilder-dist (or pbuilder or sbuild).

2.6 Seeking Review and Sponsorship

One of the biggest advantages to using the UDD workflow is to improve quality by seeking review of changes by your
peers. This is true whether or not you have upload rights yourself. Of course, if you don’t have upload rights, you will
need to seek sponsorship.

Once you are happy with your fix, and have a branch ready to go, the following steps can be used to publish your
branch on Launchpad, link it to the bug issue, and create a merge proposal for others to review, and sponsors to
upload.

2.6.1 Pushing to Launchpad

We previously showed you how to associate your branch to the bug using dch and bzr commit. However, the
branch and bug don’t actually get linked until you push the branch to Launchpad.

It is not critical to have a link to a bug for every change you make, but if you are fixing reported bugs then linking to
them will be useful.

The general form of the URL you should push your branch to is:

lp:~<user-id>/ubuntu/<distroseries>/<package>/<branch-name>

For example, to push your fix for bug 12345 in the Tomboy package for Trusty, you’d use:

$ bzr push lp:~subgenius/ubuntu/trusty/tomboy/bug-12345

The last component of the path is arbitrary; it’s up to you to pick something meaningful.

However, this usually isn’t enough to get Ubuntu developers to review and sponsor your change. You should next
submit a merge proposal.

To do this open the bug page in a browser, e.g.:

$ bzr lp-open

If that fails, then you can use:

$ xdg-open https://code.launchpad.net/~subgenius/ubuntu/trusty/tomboy/bug-12345

where most of the URL matches what you used for bzr push. On this page, you’ll see a link that says Propose for
merging into another branch. Type in an explanation of your change in the Initial Comment box. Lastly, click Propose
Merge to complete the process.

Merge proposals to package source branches will automatically subscribe the ~ubuntu-branches team, which should
be enough to reach an Ubuntu developer who can review and sponsor your package change.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 43

https://wiki.ubuntu.com/SecurityTeam/BuildEnvironment

2.7. Uploading a package Ubuntu Packaging Guide

2.6.2 Generating a debdiff

As noted above, some sponsors still prefer reviewing a debdiff attached to bug reports instead of a merge proposal. If
you’re requested to include a debdiff, you can generate one like this (from inside your bug-12345 branch):

$ bzr diff -rbranch:../tomboy.dev

Another way is to is to open the merge proposal and download the diff.

You should ensure that diff has the changes you expect, no more and no less. Name the diff appropriately, e.g.
foobar-12345.debdiff and attach it to the bug report.

2.6.3 Dealing with feedback from sponsors

If a sponsor reviews your branch and asks you to change something, you can do this fairly easily. Simply go to the
branch that you were working in before, make the changes requested, and then commit:

$ bzr commit

Now when you push your branch to Launchpad, Bazaar will remembered where you pushed to, and will update the
branch on Launchpad with your latest commits. All you need to do is:

$ bzr push

You can then reply to the merge proposal review email explaining what you changed, and asking for re-review, or you
can reply on the merge proposal page in Launchpad.

Note that if you are sponsored via a debdiff attached to a bug report you need to manually update by generating a new
diff and attaching that to the bug report.

2.6.4 Expectations

The Ubuntu developers have set up a schedule of “patch pilots”, who regularly review the sponsoring queue and give
feedback on branches and patches. Even though this measure has been put in place it might still take several days
until you hear back. This depends on how busy everybody is, if the development release is currently frozen, or other
factors.

If you haven’t heard back in a while, feel free to join #ubuntu-devel on irc.freenode.net and find out if somebody can
help you there.

For more information on the generall sponsorship process, review the documentation on our wiki as well:
https://wiki.ubuntu.com/SponsorshipProcess

2.7 Uploading a package

Once your merge proposal is reviewed and approved, you will want to upload your package, either to the archive (if
you have permission) or to your Personal Package Archive (PPA). You might also want to do an upload if you are
sponsoring someone else’s changes.

2.7.1 Uploading a change made by you

When you have a branch with a change that you would like to upload you need to get that change back on to the main
source branch, build a source package, and then upload it.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 44

https://wiki.ubuntu.com/SponsorshipProcess
https://help.launchpad.net/Packaging/PPA

2.7. Uploading a package Ubuntu Packaging Guide

First, you need to check that you have the latest version of the package in your checkout of the development package
trunk:

$ cd tomboy/tomboy.dev
$ bzr pull

This pulls in any changes that may have been committed while you were working on your fix. From here, you have
several options. If the changes on the trunk are large and you feel should be tested along with your change you can
merge them into your bug fix branch and test there. If not, then you can carry on merging your bug fix branch into the
development trunk branch. As of bzr 2.5 and bzr-builddeb 2.8.1, this works with just the standard merge command:

$ bzr merge ../bug-12345

For older versions of bzr, you can use the merge-package command instead:

$ bzr merge-package ../bug-12345

This will merge the two trees, possibly producing conflicts, which you’ll need to resolve manually.

Next you should make sure the debian/changelog is as you would like, with the correct distribution, version
number, etc.

Once that is done you should review the change you are about to commit with bzr diff. This should show you the
same changes as a debdiff would before you upload the source package.

The next step is to build and test the modified source package as you normally would:

$ bzr builddeb -S

When you’re finally happy with your branch, make sure you’ve committed all your changes, then tag the branch
with the changelog’s version number. The bzr tag command will do this for you automatically when given no
arguments:

$ bzr tag

This tag will tell the package importer that what is in the Bazaar branch is the same as in the archive.

Now you can push the changes back to Launchpad:

$ bzr push ubuntu:tomboy

(Change the destination if you are uploading an SRU or similar.)

You need one last step to get your changes uploaded into Ubuntu or your PPA; you need to dput the source package
to the appropriate location. For example, if you want to upload your changes to your PPA, you’d do:

$ dput ppa:imasponsor/myppa tomboy_1.5.2-1ubuntu5_source.changes

or, if you have permission to upload to the primary archive:

$ dput tomboy_1.5.2-1ubuntu5_source.changes

You are now free to delete your feature branch, as it is merged, and can be re-downloaded from Launchpad if needed.

2.7.2 Sponsoring a change

Sponsoring someone else’s change is just like the above procedure, but instead of merging from a branch you created,
you merge from the branch in the merge proposal:

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 45

2.8. Getting The Latest Ubuntu Packaging Guide

$ bzr merge lp:~subgenius/ubuntu/trusty/tomboy/bug-12345

If there are lots of merge conflicts you would probably want to ask the contributor to fix them up. See the next section
to learn how to cancel a pending merge.

But if the changes look good, commit and then follow the rest of the uploading process:

$ bzr commit --author "Bob Dobbs <subgenius@example.com>"

2.7.3 Canceling an upload

At any time before you dput the source package you can decide to cancel an upload and revert the changes:

$ bzr revert

You can do this if you notice something needs more work, or if you would like to ask the contributor to fix up conflicts
when sponsoring something.

2.7.4 Sponsoring something and making your own changes

If you are going to sponsor someone’s work, but you would like to roll it up with some changes of your own then you
can merge their work in to a separate branch first.

If you already have a branch where you are working on the package and you would like to include their changes, then
simply run the bzr merge from that branch, instead of the checkout of the development package. You can then
make the changes and commit, and then carry on with your changes to the package.

If you don’t have an existing branch, but you know you would like to make changes based on what the contributor
provides then you should start by grabbing their branch:

$ bzr branch lp:~subgenius/ubuntu/trusty/tomboy/bug-12345

then work in this new branch, and then merge it in to the main one and upload as if it was your own work. The
contributor will still be mentioned in the changelog, and Bazaar will correctly attribute the changes they made to them.

2.8 Getting The Latest

If someone else has landed changes on a package, you will want to pull those changes in your own copies of the
package branches.

2.8.1 Updating your main branch

Updating your copy of a branch that corresponds to the package in a particular release is very simple, simply use bzr
pull from the appropriate directory:

$ cd tomboy/tomboy.dev
$ bzr pull

This works wherever you have a checkout of a branch, so it will work for things like branches of saucy, trusty-proposed,
etc.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 46

2.9. Merging — Updating from Debian and Upstream Ubuntu Packaging Guide

2.8.2 Getting the latest in to your working branches

Once you have updated your copy of a distroseries branch, then you may want to merge this in to your working
branches as well, so that they are based on the latest code.

You don’t have to do this all the time though. You can work on slightly older code with no problems. The disadvantage
would come if you were working on some code that someone else changed. If you are not working on the latest version
then your changes may not be correct, and may even produce conflicts.

The merge does have to be done at some point though. The longer it is left, the harder may be, so doing it regularly
should keep each merge simple. Even if there are many merges the total effort would hopefully be less.

To merge the changes you just need to use bzr merge, but you must have committed your current work first:

$ cd tomboy/bug-12345
$ bzr merge ../tomboy.dev

Any conflicts will be reported, and you can fix them up. To review the changes that you just merged use bzr diff.
To undo the merge use bzr revert. Once you are happy with the changes then use bzr commit.

2.8.3 Referring to versions of a package

You will often think in terms of versions of a package, rather than the underlying Bazaar revision numbers. bzr-
builddeb provides a revision specifier that makes this convenient. Any command that takes a -r argument to specify
a revision or revision range will work with this specifier, e.g. bzr log, bzr diff, and so on. To view the versions
of a package, use the package: specifier:

$ bzr diff -r package:0.1-1..package:0.1-2

This shows you the difference between package version 0.1-1 and 0.1-2.

2.9 Merging — Updating from Debian and Upstream

Merging is one of the strengths of Bazaar, and something we do often in Ubuntu development. Updates can be merged
from Debian, from a new upstream release, and from other Ubuntu developers. Doing it in Bazaar is pretty simple,
and all based around the bzr merge command 1.

While you are in any branch’s working directory, you can merge in a branch from a different location. First check that
you have no uncommitted changes:

$ bzr status

If that reports anything then you will either have to commit the changes, revert them, or shelve them to come back to
later.

2.9.1 Merging from Debian

Next run bzr merge passing the URL of the branch to merge from. For example, to merge from the version of the
package in Debian Unstable run 2:

1 You will need newer versions of bzr and the bzr-builddeb for the merge command to work. Use the versions from Ubuntu 12.04
(Precise) or the development versions from the bzr PPA. Specifically, you need bzr version 2.5 beta 5 or newer, and bzr-builddeb version
2.8.1 or newer. For older versions, use the bzr merge-package command instead.

2 To check other available branches of a package in Debian, see package code page. E.g. https://code.launchpad.net/debian/+source/tomboy

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 47

https://code.launchpad.net/debian/+source/tomboy

2.9. Merging — Updating from Debian and Upstream Ubuntu Packaging Guide

$ bzr merge lp:debian/tomboy

This will merge the changes since the last merge point and leave you with changes to review. This may cause some
conflicts. You can see everything that the merge command did by running:

$ bzr status
$ bzr diff

If conflicts are reported then you need to edit those files to make them look how they should, removing the conflict
markers. Once you have done this, run:

$ bzr resolve
$ bzr conflicts

This will resolve any conflicted files that you fixed, and then tell you what else you have to deal with.

Once any conflicts are resolved, and you have made any other changes that you need, you will add a new changelog
entry, and commit:

$ dch -i
$ bzr commit

as described earlier.

However, before you commit, it is always a good thing to check all the Ubuntu changes by running:

$ bzr diff -r tag:0.6.10-5

which will show the differences between the Debian (0.6.10-5) and Ubuntu versions (0.6.10-5ubuntu1). In similar
way you can compare to any other versions. To see all available versions run:

$ bzr tags

After testing and committing the merge, you will need to seek sponsorship or upload to the archive in the normal way.

If you are going to build the source package from this merged branch, you would use the -S option to the bd command.
One other thing you’ll want to consider is also using the --package-merge option. This will add the appropriate
-v and -sa options to the source package so that all the changelog entries since the last Ubuntu change will be
included in your _source.changes file. For example:

$ bzr builddeb -S --package-merge

2.9.2 Merging a new upstream version

When upstream releases a new version (or you want to package a snapshot), you have to merge a tarball into your
branch.

This is done using the bzr merge-upstream command. If your package has a valid debian/watch file, from
inside the branch that you want to merge to, just type this:

$ bzr merge-upstream

This will download the tarball and merge it into your branch, automatically adding a debian/changelog entry for
you. bzr-builddeb looks at the debian/watch file for the upstream tarball location.

If you do not have a debian/watch file, you’ll need to specify the location of the upstream tarball, and the version
manually:

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 48

2.10. Using Chroots Ubuntu Packaging Guide

$ bzr merge-upstream --version 1.2 http://example.org/releases/foo-1.2.tar.gz

The --version option is used to specify the upstream version that is being merged in, as the command isn’t able to
infer that (yet).

The last parameter is the location of the tarball that you are upgrading to; this can either be a local filesystem path, or
a http, ftp, sftp, etc. URI as shown. The command will automatically download the tarball for you. The tarball will be
renamed appropriately and, if required, converted to .gz.

The merge-upstream command will either tell you that it completed successfully, or that there were conflicts. Either
way you will be able to review the changes before committing as normal.

If you are merging an upstream release into an existing Bazaar branch that has not previously used the UDD layout,
bzr merge-upstream will fail with an error that the tag for the previous upstream version is not available; the
merge can’t be completed without knowing what base version to merge against. To work around this, create a tag in
your existing repository for the last upstream version present there; e.g., if the last Ubuntu release was 1.1-0ubuntu3,
create the tag upstream-1.1 pointing to the bzr revision you want to use as the tip of the upstream branch.

2.10 Using Chroots

If you are running one version of Ubuntu but working on packages for another versions you can create the environment
of the other version with a chroot.

A chroot allows you to have a full filesystem from another distribution which you can work in quite normally. It
avoids the overhead of running a full virtual machine.

2.10.1 Creating a Chroot

Use the command debootstrap to create a new chroot:

$ sudo debootstrap trusty trusty/

This will create a directory trusty and install a minimal trusty system into it.

If your version of debootstrap does not know about Trusty you can try upgrading to the version in backports.

You can then work inside the chroot:

$ sudo chroot trusty

Where you can install or remove any package you wish without affecting your main system.

You might want to copy your GPG/ssh keys and Bazaar configuration into the chroot so you can access and sign
packages directly:

$ sudo mkdir trusty/home/<username>
$ sudo cp -r ~/.gnupg ~/.ssh ~/.bazaar trusty/home/<username>

To stop apt and other programs complaining about missing locales you can install your relevant language pack:

$ apt-get install language-pack-en

If you want to run X programs you will need to bind the /tmp directory into the chroot, from outside the chroot run:

$ sudo mount -t none -o bind /tmp trusty/tmp
$ xhost +

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 49

2.11. Traditional Packaging Ubuntu Packaging Guide

Some programs may need you to bind /dev or /proc.

For more information on chroots see our Debootstrap Chroot wiki page.

2.10.2 Alternatives

SBuild is a system similar to PBuilder for creating an environment to run test package builds in. It closer matches that
used by Launchpad for building packages but takes some more setup compared to PBuilder. See the Security Team
Build Environment wiki page for a full explanation.

Full virtual machines can be useful for packaging and testing programs. TestDrive is a program to automate syncing
and running daily ISO images, see the TestDrive wiki page for more information.

You can also set up pbuilder to pause when it comes across a build failure. Copy C10shell from
/usr/share/doc/pbuilder/examples into a directory and use the --hookdir= argument to point to it.

Amazon’s EC2 cloud computers allow you to hire a computer paying a few US cents per hour, you can set up Ubuntu
machines of any supported version and package on those. This is useful when you want to compile many packages at
the same time or to overcome bandwidth restraints.

2.11 Traditional Packaging

The majority of this guide deals with Ubuntu Distributed Development (UDD) which utilizes the distributed version
control system (DVCS) Bazaar for retrieving package sources and submitting fixes with merge proposals. This article
will discuss what we will call traditional packaging methods for lack of a better word. Before Bazaar was adopted for
Ubuntu development, these were the typical methods for contributing to Ubuntu.

In some cases, you may need to use these tools instead of UDD. So it is good to be familiar with them. Before you
begin, you should already have read the article Getting Set Up.

2.11.1 Getting the Source

In order to get a source package, you can simply run:

$ apt-get source <package_name>

This method has some draw backs though. It downloads the version of the source that is available on your system.
You are likely running the current stable release, but you want to contribute your change against the package in the
development release. Luckily, the ubuntu-dev-tools package provides a helper script:

$ pull-lp-source <package_name>

By default, the latest version in the development release will be downloaded. You can also specify a version or Ubuntu
release like:

$ pull-lp-source <package_name> trusty

to pull the source from the trusty release, or:

$ pull-lp-source <package_name> 1.0-1ubuntu1

to download version 1.0-1ubuntu1 of the package. For more information on the command, see man
pull-lp-source.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 50

https://wiki.ubuntu.com/DebootstrapChroot
https://wiki.ubuntu.com/SecurityTeam/BuildEnvironment
https://wiki.ubuntu.com/SecurityTeam/BuildEnvironment
https://wiki.ubuntu.com/QATeam/Testdrive
https://help.ubuntu.com/community/EC2StartersGuide

2.11. Traditional Packaging Ubuntu Packaging Guide

For our example, let’s pretend we got a bug report saying that “colour” in the description of xicc should be “color,”
and we want to fix it. (Note: This is just an example of something to change and not really a bug.) To get the source,
run:

$ pull-lp-source xicc 0.2-3

2.11.2 Creating a Debdiff

A debdiff shows the difference between two Debian packages. The name of the command used to generate one
is also debdiff. It is part of the devscripts package. See man debdiff for all the details. To compare two
source packages, pass the two dsc files as arguments:

$ debdiff <package_name>_1.0-1.dsc <package_name>_1.0-1ubuntu1.dsc

To continue with our example, let’s edit the debian/control and “fix” our “bug”:

$ cd xicc-0.2
$ sed -i 's/colour/color/g' debian/control

We also must adhere to the Debian Maintainer Field Spec and edit debian/control to replace:

Maintainer: Ross Burton <ross@debian.org>

with:

Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
XSBC-Original-Maintainer: Ross Burton <ross@debian.org>

You can use the update-maintainer tool (in the ubuntu-dev-tools package) to do that.

Remember to document your changes in debian/changelog using dch -i and then we can generate a new
source package:

$ debuild -S

Now we can examine our changes using debdiff:

$ cd ..
$ debdiff xicc_0.2-3.dsc xicc_0.2-3ubuntu1.dsc | less

To create a patch file that you can send to others or attach to a bug report for sponsorship, run:

$ debdiff xicc_0.2-3.dsc xicc_0.2-3ubuntu1.dsc > xicc_0.2-3ubuntu1.debdiff

2.11.3 Applying a Debdiff

In order to apply a debdiff, first make sure you have the source code of the version that it was created against:

$ pull-lp-source xicc 0.2-3

Then in a terminal, change to the directory where the source was uncompressed:

$ cd xicc-0.2

A debdiff is just like a normal patch file. Apply it as usual with:

$ patch -p1 < ../xicc_0.2.2ubuntu1.debdiff

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 51

https://wiki.ubuntu.com/DebianMaintainerField

2.12. KDE Packaging Ubuntu Packaging Guide

2.12 KDE Packaging

Packaging of KDE programs in Ubuntu is managed by the Kubuntu and MOTU teams. You can contact the Kubuntu
team on the Kubuntu mailing list and #kubuntu-devel Freenode IRC channel. More information about Kubuntu
development is on the Kubuntu wiki page.

Our packaging follows the practices of the Debian Qt/KDE Team and Debian KDE Extras Team. Most of our packages
are derived from the packaging of these Debian teams.

2.12.1 Patching Policy

Kubuntu does not add patches to KDE programs unless they come from the upstream authors or submitted upstream
with the expectation they will be merged soon or we have consulted the issue with the upstream authors.

Kubuntu does not change the branding of packages except where upstream expects this (such as the top left logo of
the Kickoff menu) or to simplify (such as removing splash screens).

2.12.2 debian/rules

Debian packages include some additions to the basic Debhelper usage. These are kept in the pkg-kde-tools
package.

Packages which use Debhelper 7 should add the --with=kde option. This will ensure the correct build flags are
used and add options such as handling kdeinit stubs and translations:

%:
dh $@ --with=kde

Some newer KDE packages use the dhmk system, an alternative to dh made by the Debian Qt/KDE team.
You can read about it in /usr/share/pkg-kde-tools/qt-kde-team/2/README. Packages using this will include
/usr/share/pkg-kde-tools/qt-kde-team/2/debian-qt-kde.mk instead of running dh.

2.12.3 Translations

Packages in main have their translations imported into Launchpad and exported from Launchpad into Ubuntu’s
language-packs.

So any KDE package in main must generate translation templates, include or make available upstream translations and
handle .desktop file translations.

To generate translation templates the package must include a Messages.sh file; complain to the upstream if it does
not. You can check it works by running extract-messages.sh which should produce one or more .pot files in
po/. This will be done automatically during build if you use the --with=kde option to dh.

Upstream will usually have also put the translation .po files into the po/ directory. If they do not, check if they
are in separate upstream language packs such as the KDE SC language packs. If they are in separate language packs
Launchpad will need to associate these together manually, contact David Planella to do this.

If a package is moved from universe to main it will need to be re-uploaded before the translations get imported into
Launchpad.

.desktop files also need translations. We patch KDELibs to read translations out of .po files which are pointed
to by a line X-Ubuntu-Gettext-Domain= added to .desktop files at package build time. A .pot file for
each package is be generated at build time and .po files need to be downloaded from upstream and included in
the package or in our language packs. The list of .po files to be downloaded from KDE’s repositories is in
/usr/lib/kubuntu-desktop-i18n/desktop-template-list.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 52

https://lists.ubuntu.com/mailman/listinfo/kubuntu-devel
https://wiki.kubuntu.org/Kubuntu
http://pkg-kde.alioth.debian.org/
https://launchpad.net/~dpm

2.12. KDE Packaging Ubuntu Packaging Guide

2.12.4 Library Symbols

Library symbols are tracked in .symbols files to ensure none go missing for new releases. KDE uses C++ libraries
which act a little differently compared to C libraries. Debian’s Qt/KDE Team have scripts to handle this. See Working
with symbols files for how to create and keep these files up to date.

© 2010-2015, Ubuntu Developers, Creative Commons Attribution-ShareAlike 3.0 53

http://pkg-kde.alioth.debian.org/symbolfiles.html
http://pkg-kde.alioth.debian.org/symbolfiles.html

CHAPTER 3

Further Reading

You can read this guide offline in different formats, if you install one of the binary packages.

If you want to learn more about building Debian packages, here are some Debian resources you may find useful:

• How to package for Debian;

• Debian Policy Manual;

• Debian New Maintainers’ Guide — available in many languages;

• Packaging tutorial (also available as a package);

• Guide for Packaging Python Modules.

We are always looking to improve this guide. If you find any problems or have some suggestions, please report a bug
on Launchpad. If you’d like to help work on the guide, grab the source there as well.

54

https://launchpad.net/ubuntu/+source/ubuntu-packaging-guide
https://wiki.debian.org/HowToPackageForDebian
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/maint-guide/
http://www.debian.org/doc/manuals/packaging-tutorial/
https://launchpad.net/ubuntu/+source/packaging-tutorial
https://wiki.debian.org/Python/LibraryStyleGuide
https://bugs.launchpad.net/ubuntu-packaging-guide
https://bugs.launchpad.net/ubuntu-packaging-guide
https://code.launchpad.net/~ubuntu-packaging-guide-team/ubuntu-packaging-guide/trunk

	Articles
	Introduction to Ubuntu Development
	Getting Set Up
	Ubuntu Distributed Development — Introduction
	Fixing a bug in Ubuntu
	Tutorial: Fixing a bug in Ubuntu
	Packaging New Software
	Security and Stable Release Updates
	Patches to Packages
	Fixing FTBFS packages
	Shared Libraries
	Backporting software updates

	Knowledge Base
	Communication in Ubuntu Development
	Basic Overview of the debian/ Directory
	autopkgtest: Automatic testing for packages
	Getting the Source
	Working on a Package
	Seeking Review and Sponsorship
	Uploading a package
	Getting The Latest
	Merging — Updating from Debian and Upstream
	Using Chroots
	Traditional Packaging
	KDE Packaging

	Further Reading

